TFAP2 transcription factors are regulators of lipid droplet biogenesis
Abstract
How trafficking pathways and organelle abundance adapt in response to metabolic and physiological changes is still mysterious, although a few transcriptional regulators of organellar biogenesis have been identified in recent years. We previously found that the Wnt signaling directly controls lipid droplet formation, linking the cell storage capacity to the established functions of Wnt in development and differentiation. In the present paper, we report that Wnt-induced lipid droplet biogenesis does not depend on the canonical TCF/LEF transcription factors. Instead, we find that TFAP2 family members mediate the pro-lipid droplet signal induced by Wnt3a, leading to the notion that the TFAP2 transcription factor may function as a 'master' regulator of lipid droplet biogenesis.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file. RNAseq data have been deposited under accession number E-MTAB-6623.
Article and author information
Author details
Funding
Swiss National Science Foundation (310030B_141173)
- Jean Gruenberg
NCCR Chemical Biology
- Jean Gruenberg
Swiss SystemsX.ch Initiative evaluated by the Swiss National Science Foundation (LipidX)
- Jean Gruenberg
Human Frontier Science Program (Fellowship)
- Cameron C Scott
Canadian Institutes of Health Research (Fellowship)
- Cameron C Scott
Swiss National Science Foundation (31003A_159479)
- Jean Gruenberg
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Scott et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,660
- views
-
- 540
- downloads
-
- 39
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 39
- citations for umbrella DOI https://doi.org/10.7554/eLife.36330