1. Structural Biology and Molecular Biophysics
Download icon

Structure of the CLC-1 chloride channel from Homo sapiens

  1. Eunyong Park
  2. Roderick MacKinnon  Is a corresponding author
  1. The Rockefeller University, United States
Research Article
  • Cited 41
  • Views 5,320
  • Annotations
Cite this article as: eLife 2018;7:e36629 doi: 10.7554/eLife.36629

Abstract

CLC channels mediate passive Cl- conduction, while CLC transporters mediate active Cl- transport coupled to H+ transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its 'glutamate gate' residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl- conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl- at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl- affinity distinguish CLC channels and transporters.

Data availability

Cryo-EM density maps of human CLC-1 have been deposited in the electron microscopy data bank under accession code EMD-7544 and 7545. Atomic coordinates have been deposited in the protein data bank under accession code 6COY and 6COZ.

The following data sets were generated
    1. Eunyong Park
    2. Roderick MacKinnon
    (2018) Human CLC-1 chloride ion channel, transmembrane domain
    Publicly available at the Electron Microscopy Data Bank (accession no. EMD-7544).
    1. Eunyong Park
    2. Roderick MacKinnon
    (2018) Human CLC-1 chloride ion channel, C-terminal cytosolic domain
    Publicly available at the Electron Microscopy Data Bank (accession no. EMD-7545).

Article and author information

Author details

  1. Eunyong Park

    Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Roderick MacKinnon

    Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, United States
    For correspondence
    mackinn@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7605-4679

Funding

Howard Hughes Medical Institute

  • Roderick MacKinnon

Jane Coffin Childs Memorial Fund for Medical Research

  • Eunyong Park

Charles H. Revson Foundation

  • Eunyong Park

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Publication history

  1. Received: March 13, 2018
  2. Accepted: May 15, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 26, 2018 (version 2)

Copyright

© 2018, Park & MacKinnon

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,320
    Page views
  • 924
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Michael F Priest et al.
    Research Article Updated

    Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1 and R2) in the Shaker potassium channel voltage sensor using a fluorescent positively charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole–Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage-sensitive phosphatase (CiVSP).

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yongjian Huang et al.
    Research Article

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.