Neolithic and Medieval virus genomes reveal complex evolution of Hepatitis B

  1. Ben Krause-Kyora  Is a corresponding author
  2. Julian Susat
  3. Felix M Key
  4. Denise Kühnert
  5. Esther Bosse
  6. Alexander Immel
  7. Christoph Rinne
  8. Sabin-Christin Kornell
  9. Diego Yepes
  10. Sören Franzenburg
  11. Henrike O Heyne
  12. Thomas Meier
  13. Sandra Lösch
  14. Harald Meller
  15. Susanne Friederich
  16. Nicole Nicklisch
  17. Kurt W Alt
  18. Stefan Schreiber
  19. Andreas Tholey
  20. Alexander Herbig
  21. Almut Nebel
  22. Johannes Krause  Is a corresponding author
  1. Kiel University, Germany
  2. Max Planck Institute for the Science of Human History, Germany
  3. University Hospital Zurich, Switzerland
  4. Broad Institute, United States
  5. Heidelberg University, Germany
  6. University of Bern, Switzerland
  7. State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Germany

Abstract

The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genomes by de novo assembly from shotgun DNA sequencing data. Additionally, we observed HBV-specific peptides using paleo-proteomics. Our results show that HBV circulates in the European population for at least 7000 years. The Neolithic HBV genomes show a high genomic similarity to each other. In a phylogenetic network, they do not group with any human-associated HBV genome and are most closely related to those infecting African non-human primates. These ancient virus forms appear to represent distinct lineages that have no close relatives today and possibly went extinct. Our results reveal the great potential of ancient DNA from human skeletons in order to study the long-time evolution of blood borne viruses.

Data availability

Raw sequence read files have been deposited at the European Nucleotide Archive under accession no. PRJEB24921

The following data sets were generated

Article and author information

Author details

  1. Ben Krause-Kyora

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    For correspondence
    b.krause-kyora@ikmb.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9435-2872
  2. Julian Susat

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Felix M Key

    Department of Archeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2812-6636
  4. Denise Kühnert

    Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Esther Bosse

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander Immel

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christoph Rinne

    Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Sabin-Christin Kornell

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Diego Yepes

    Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Sören Franzenburg

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Henrike O Heyne

    Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Thomas Meier

    Institute for Pre- and Protohistory and Near Eastern Archaeology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Sandra Lösch

    Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Harald Meller

    State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Halle, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Susanne Friederich

    State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Halle, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Nicole Nicklisch

    State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Halle, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Kurt W Alt

    State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Halle, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Stefan Schreiber

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  19. Andreas Tholey

    Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  20. Alexander Herbig

    Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  21. Almut Nebel

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  22. Johannes Krause

    Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
    For correspondence
    krause@shh.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9144-3920

Funding

European Research Council (APGREID)

  • Johannes Krause

Deutsche Forschungsgemeinschaft (Al 287-7-1)

  • Kurt W Alt

Deutsche Forschungsgemeinschaft (Me 3245/1-1)

  • Harald Meller

Collaborative Research Center (1266)

  • Ben Krause-Kyora

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Our human remains used are prehistoric European specimens. No consent from them can be required. No decedent groups claim responsibility or ancestry to those people.

Copyright

© 2018, Krause-Kyora et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben Krause-Kyora
  2. Julian Susat
  3. Felix M Key
  4. Denise Kühnert
  5. Esther Bosse
  6. Alexander Immel
  7. Christoph Rinne
  8. Sabin-Christin Kornell
  9. Diego Yepes
  10. Sören Franzenburg
  11. Henrike O Heyne
  12. Thomas Meier
  13. Sandra Lösch
  14. Harald Meller
  15. Susanne Friederich
  16. Nicole Nicklisch
  17. Kurt W Alt
  18. Stefan Schreiber
  19. Andreas Tholey
  20. Alexander Herbig
  21. Almut Nebel
  22. Johannes Krause
(2018)
Neolithic and Medieval virus genomes reveal complex evolution of Hepatitis B
eLife 7:e36666.
https://doi.org/10.7554/eLife.36666

Share this article

https://doi.org/10.7554/eLife.36666

Further reading

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.