Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces

  1. Vladimir A Volkov
  2. Pim J Huis in 't Veld
  3. Marileen Dogterom  Is a corresponding author
  4. Andrea Musacchio  Is a corresponding author
  1. Delft University of Technology, Netherlands
  2. Max Planck Institute of Molecular Physiology, Germany

Abstract

Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent interactions with microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules' residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly.

Article and author information

Author details

  1. Vladimir A Volkov

    Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5407-3366
  2. Pim J Huis in 't Veld

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0234-6390
  3. Marileen Dogterom

    Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
    For correspondence
    m.dogterom@tudelft.nl
    Competing interests
    No competing interests declared.
  4. Andrea Musacchio

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    andrea.musacchio@mpi-dortmund.mpg.de
    Competing interests
    Andrea Musacchio, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2362-8784

Funding

H2020 European Research Council (669686)

  • Andrea Musacchio

H2020 European Research Council (609822)

  • Marileen Dogterom

European Molecular Biology Organization (7203)

  • Pim J Huis in 't Veld

Deutsche Forschungsgemeinschaft (CRC1093)

  • Andrea Musacchio

Max-Planck-Gesellschaft (Open-access funding)

  • Andrea Musacchio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jessica K Tyler, Weill Cornell Medicine, United States

Version history

  1. Received: March 17, 2018
  2. Accepted: March 31, 2018
  3. Accepted Manuscript published: April 9, 2018 (version 1)
  4. Version of Record published: May 8, 2018 (version 2)

Copyright

© 2018, Volkov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,231
    views
  • 541
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vladimir A Volkov
  2. Pim J Huis in 't Veld
  3. Marileen Dogterom
  4. Andrea Musacchio
(2018)
Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces
eLife 7:e36764.
https://doi.org/10.7554/eLife.36764

Share this article

https://doi.org/10.7554/eLife.36764

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.