Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau

Abstract

Alzheimer's and Parkinson's disease are late onset neurodegenerative diseases that will require therapy over decades to mitigate the effects of disease-driving proteins such tau and α-synuclein (α-Syn). Previously we found that TRIM28 regulates the levels and toxicity of α-Syn and tau (Rousseaux et al., 2016). However, it was not clear how TRIM28 regulate α-Syn and it was not known if its chronic inhibition later in life was safe. Here, we show that TRIM28 may regulate α-Syn and tau levels via SUMOylation, and that genetic suppression of Trim28 in adult mice is compatible with life. We were surprised to see that mice lacking Trim28 in adulthood do not exhibit behavioral or pathological phenotypes, and importantly, adult reduction of TRIM28 results in a decrease of α-Syn and tau levels. These results suggest that deleterious effects from TRIM28 depletion are limited to development and that its inhibition adulthood provides a potential path for modulating α-Syn and tau levels.

Data availability

No datasets were generated in this study. All data are presented in this manuscript.

Article and author information

Author details

  1. Maxime WC Rousseaux

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Jean-Pierre Revelli

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  3. Gabriel E Vázquez-Vélez

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  4. Ji-Yoen Kim

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Evelyn Craigen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Kristyn Gonzales

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Jaclyn Beckinghausen

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  8. Huda Y Zoghbi

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0700-3349

Funding

Parkinson's Foundation (PF-JFA-1762)

  • Maxime WC Rousseaux

UCB Pharma

  • Huda Y Zoghbi

Robert A. and Renee E. Belfer Family Foundation

  • Huda Y Zoghbi

The Huffington Foundation

  • Huda Y Zoghbi

The Hamill Foundation

  • Huda Y Zoghbi

Howard Hughes Medical Institute

  • Huda Y Zoghbi

Intellectual and Developmental Disabilities Research Center (NIH U54 HD083092)

  • Huda Y Zoghbi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Up to five mice were housed per cage and kept on a 12 h light; 12 h dark cycle and were given water and standard rodent chow ad libitum. All procedures carried out in mice were approved by the Institutional Animal Care and Use Committee for Baylor College of Medicine and Affiliates under protocol AN-1013.

Copyright

© 2018, Rousseaux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,302
    views
  • 525
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime WC Rousseaux
  2. Jean-Pierre Revelli
  3. Gabriel E Vázquez-Vélez
  4. Ji-Yoen Kim
  5. Evelyn Craigen
  6. Kristyn Gonzales
  7. Jaclyn Beckinghausen
  8. Huda Y Zoghbi
(2018)
Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau
eLife 7:e36768.
https://doi.org/10.7554/eLife.36768

Share this article

https://doi.org/10.7554/eLife.36768

Further reading

    1. Medicine
    2. Neuroscience
    Joanna Kosinska, Julian C Assmann ... Markus Schwaninger
    Research Article

    Monomethyl fumarate (MMF) and its prodrug dimethyl fumarate (DMF) are currently the most widely used agents for the treatment of multiple sclerosis (MS). However, not all patients benefit from DMF. We hypothesized that the variable response of patients may be due to their diet. In support of this hypothesis, mice subjected to experimental autoimmune encephalomyelitis (EAE), a model of MS, did not benefit from DMF treatment when fed a lauric acid-rich (LA) diet. Mice on normal chow (NC) diet, in contrast, and even more so mice on high-fiber (HFb) diet showed the expected protective DMF effect. DMF lacked efficacy in the LA diet-fed group despite similar resorption and preserved effects on plasma lipids. When mice were fed the permissive HFb diet, the protective effect of DMF treatment depended on hydroxycarboxylic receptor 2 (HCAR2) which is highly expressed in neutrophil granulocytes. Indeed, deletion of Hcar2 in neutrophils abrogated DMF protective effects in EAE. Diet had a profound effect on the transcriptional profile of neutrophils and modulated their response to MMF. In summary, DMF required HCAR2 on neutrophils as well as permissive dietary effects for its therapeutic action. Translating the dietary intervention into the clinic may improve MS therapy.

    1. Neuroscience
    Benjamin Le Gac, Marine Tournissac ... Bruno Cauli
    Research Article

    Neurovascular coupling, linking neuronal activity to cerebral blood flow, is essential for brain function and underpins functional brain imaging. Whereas mechanisms involved in vasodilation are well-documented, those controlling vasoconstriction remain overlooked. This study unravels the mechanisms by which pyramidal cells elicit arteriole vasoconstriction. Using patch-clamp recording, vascular and Ca2+ imaging in mouse cortical slices, we show that strong optogenetic activation of layer II/III pyramidal cells induces vasoconstriction, correlating with firing frequency and somatic Ca2+ increase. Ex vivo and in vivo pharmacological investigations indicate that this vasoconstriction predominantly recruits prostaglandin E2 through the cyclooxygenase-2 pathway, and activation of EP1 and EP3 receptors. We also present evidence that specific interneurons releasing neuropeptide Y, and astrocytes, through 20-hydroxyeicosatetraenoic acid, contribute to this process. By revealing the mechanisms by which pyramidal cells lead to vasoconstriction, our findings shed light on the complex regulation of neurovascular coupling.