Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau

Abstract

Alzheimer's and Parkinson's disease are late onset neurodegenerative diseases that will require therapy over decades to mitigate the effects of disease-driving proteins such tau and α-synuclein (α-Syn). Previously we found that TRIM28 regulates the levels and toxicity of α-Syn and tau (Rousseaux et al., 2016). However, it was not clear how TRIM28 regulate α-Syn and it was not known if its chronic inhibition later in life was safe. Here, we show that TRIM28 may regulate α-Syn and tau levels via SUMOylation, and that genetic suppression of Trim28 in adult mice is compatible with life. We were surprised to see that mice lacking Trim28 in adulthood do not exhibit behavioral or pathological phenotypes, and importantly, adult reduction of TRIM28 results in a decrease of α-Syn and tau levels. These results suggest that deleterious effects from TRIM28 depletion are limited to development and that its inhibition adulthood provides a potential path for modulating α-Syn and tau levels.

Data availability

No datasets were generated in this study. All data are presented in this manuscript.

Article and author information

Author details

  1. Maxime WC Rousseaux

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Jean-Pierre Revelli

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  3. Gabriel E Vázquez-Vélez

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  4. Ji-Yoen Kim

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Evelyn Craigen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Kristyn Gonzales

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Jaclyn Beckinghausen

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  8. Huda Y Zoghbi

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0700-3349

Funding

Parkinson's Foundation (PF-JFA-1762)

  • Maxime WC Rousseaux

UCB Pharma

  • Huda Y Zoghbi

Robert A. and Renee E. Belfer Family Foundation

  • Huda Y Zoghbi

The Huffington Foundation

  • Huda Y Zoghbi

The Hamill Foundation

  • Huda Y Zoghbi

Howard Hughes Medical Institute

  • Huda Y Zoghbi

Intellectual and Developmental Disabilities Research Center (NIH U54 HD083092)

  • Huda Y Zoghbi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Susan L Ackerman, Howard Hughes Medical Institute, University of California, San Diego, United States

Ethics

Animal experimentation: Up to five mice were housed per cage and kept on a 12 h light; 12 h dark cycle and were given water and standard rodent chow ad libitum. All procedures carried out in mice were approved by the Institutional Animal Care and Use Committee for Baylor College of Medicine and Affiliates under protocol AN-1013.

Version history

  1. Received: March 19, 2018
  2. Accepted: June 3, 2018
  3. Accepted Manuscript published: June 4, 2018 (version 1)
  4. Version of Record published: June 8, 2018 (version 2)

Copyright

© 2018, Rousseaux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,122
    views
  • 499
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime WC Rousseaux
  2. Jean-Pierre Revelli
  3. Gabriel E Vázquez-Vélez
  4. Ji-Yoen Kim
  5. Evelyn Craigen
  6. Kristyn Gonzales
  7. Jaclyn Beckinghausen
  8. Huda Y Zoghbi
(2018)
Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau
eLife 7:e36768.
https://doi.org/10.7554/eLife.36768

Share this article

https://doi.org/10.7554/eLife.36768

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.