Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability

  1. Niko Välimäki
  2. Heli Kuisma
  3. Annukka Pasanen
  4. Oskari Heikinheimo
  5. Jari Sjöberg
  6. Ralf Bützow
  7. Nanna Sarvilinna
  8. Hanna-Riikka Heinonen
  9. Jaana Tolvanen
  10. Simona Bramante
  11. Tomas Tanskanen
  12. Juha Auvinen
  13. Terhi Piltonen
  14. Amjad Alkodsi
  15. Rainer Lehtonen
  16. Eevi Kaasinen
  17. Kimmo Palin
  18. Lauri A Aaltonen  Is a corresponding author
  1. University of Helsinki, Finland
  2. University of Helsinki and Helsinki University Hospital, Finland
  3. University of Oulu, Finland
  4. Oulu University Hospital, Finland
  5. University Of Helsinki, Finland

Abstract

Uterine leiomyomas (ULs) are benign tumors that are a major burden to women's health. A genome-wide association study on 15,453 UL cases and 392,628 controls was performed, followed by replication of the genomic risk in six cohorts. Effects of the risk alleles were evaluated in view of molecular and clinical characteristics. 22 loci displayed a genome-wide significant association. The likely predisposition genes could be grouped to two biological processes. Genes involved in genome stability were represented by TERT, TERC, OBFC1 - highlighting the role of telomere maintenance - TP53 and ATM. Genes involved in genitourinary development, WNT4, WT1, SALL1, MED12, ESR1, GREB1, FOXO1, DMRT1 and uterine stem cell marker antigen CD44, formed another strong subgroup. The combined risk contributed by the 22 loci was associated with MED12 mutation-positive tumors. The findings link genes for uterine development and genetic stability to leiomyomagenesis, and in part explain the more frequent occurrence of UL in women of African origin.

Data availability

The UKBB data is available through the UK Biobank (http://www.ukbiobank.ac.uk). The NFBC data can be requested from the Northern Finland Birth Cohorts' Project Center at the Medical Faculty, University of Oulu (http://www.oulu.fi/nfbc/). The summary statistics that support the findings presented in this work are included in Supplementary Tables and Supplementary Data.

The following previously published data sets were used

Article and author information

Author details

  1. Niko Välimäki

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9200-9560
  2. Heli Kuisma

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Annukka Pasanen

    Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0079-9807
  4. Oskari Heikinheimo

    Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Jari Sjöberg

    Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Ralf Bützow

    Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Nanna Sarvilinna

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Hanna-Riikka Heinonen

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  9. Jaana Tolvanen

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1183-4943
  10. Simona Bramante

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  11. Tomas Tanskanen

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  12. Juha Auvinen

    Northern Finland Birth Cohort Studies and Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
    Competing interests
    The authors declare that no competing interests exist.
  13. Terhi Piltonen

    Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
    Competing interests
    The authors declare that no competing interests exist.
  14. Amjad Alkodsi

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3528-4683
  15. Rainer Lehtonen

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  16. Eevi Kaasinen

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  17. Kimmo Palin

    Department of Medical and Clinical Genetics, University Of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4621-6128
  18. Lauri A Aaltonen

    Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
    For correspondence
    lauri.aaltonen@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6839-4286

Funding

Terveyden Tutkimuksen Toimikunta (1250345)

  • Lauri A Aaltonen

European Research Council (695727)

  • Lauri A Aaltonen

Cancer Society of Finland

  • Lauri A Aaltonen

Sigrid Juséliuksen Säätiö

  • Lauri A Aaltonen

Jane ja Aatos Erkon Säätiö

  • Lauri A Aaltonen

Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta (287665)

  • Niko Välimäki

NordForsk (62721)

  • Kimmo Palin

Terveyden Tutkimuksen Toimikunta (312041)

  • Lauri A Aaltonen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The anonymous patient samples (65) were collected according to Finnish laws and regulations by permission of the director of the health care unit. For the rest of the patients, an informed consent was obtained. This study was conducted in accordance with the Declaration of Helsinki and approved by the Finnish National Supervisory Authority for Welfare and Health, National Institute for Health and Welfare (THL/151/5.05.00/2017), and the Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS/177/13/03/03/2016).

Copyright

© 2018, Välimäki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,004
    views
  • 433
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niko Välimäki
  2. Heli Kuisma
  3. Annukka Pasanen
  4. Oskari Heikinheimo
  5. Jari Sjöberg
  6. Ralf Bützow
  7. Nanna Sarvilinna
  8. Hanna-Riikka Heinonen
  9. Jaana Tolvanen
  10. Simona Bramante
  11. Tomas Tanskanen
  12. Juha Auvinen
  13. Terhi Piltonen
  14. Amjad Alkodsi
  15. Rainer Lehtonen
  16. Eevi Kaasinen
  17. Kimmo Palin
  18. Lauri A Aaltonen
(2018)
Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability
eLife 7:e37110.
https://doi.org/10.7554/eLife.37110

Share this article

https://doi.org/10.7554/eLife.37110

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Wei Q Deng, Nathan Cawte ... Sonia S Anand
    Research Article

    Background:

    Maternal smoking has been linked to adverse health outcomes in newborns but the extent to which it impacts newborn health has not been quantified through an aggregated cord blood DNA methylation (DNAm) score. Here, we examine the feasibility of using cord blood DNAm scores leveraging large external studies as discovery samples to capture the epigenetic signature of maternal smoking and its influence on newborns in White European and South Asian populations.

    Methods:

    We first examined the association between individual CpGs and cigarette smoking during pregnancy, and smoking exposure in two White European birth cohorts (n=744). Leveraging established CpGs for maternal smoking, we constructed a cord blood epigenetic score of maternal smoking that was validated in one of the European-origin cohorts (n=347). This score was then tested for association with smoking status, secondary smoking exposure during pregnancy, and health outcomes in offspring measured after birth in an independent White European (n=397) and a South Asian birth cohort (n=504).

    Results:

    Several previously reported genes for maternal smoking were supported, with the strongest and most consistent association signal from the GFI1 gene (6 CpGs with p<5 × 10-5). The epigenetic maternal smoking score was strongly associated with smoking status during pregnancy (OR = 1.09 [1.07, 1.10], p=5.5 × 10-33) and more hours of self-reported smoking exposure per week (1.93 [1.27, 2.58], p=7.8 × 10-9) in White Europeans. However, it was not associated with self-reported exposure (p>0.05) among South Asians, likely due to a lack of smoking in this group. The same score was consistently associated with a smaller birth size (–0.37±0.12 cm, p=0.0023) in the South Asian cohort and a lower birth weight (–0.043±0.013 kg, p=0.0011) in the combined cohorts.

    Conclusions:

    This cord blood epigenetic score can help identify babies exposed to maternal smoking and assess its long-term impact on growth. Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birth weight in newborns, in both White European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers.

    Funding:

    This study was funded by the Canadian Institutes of Health Research Metabolomics Team Grant: MWG-146332.

    1. Cancer Biology
    2. Genetics and Genomics
    Li Min, Fanqin Bu ... Shutian Zhang
    Research Article

    It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.