The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells
Abstract
Acquired resistance to endocrine therapy remains a significant clinical burden for breast cancer patients. Somatic mutations in the ESR1 (estrogen receptor alpha (ERα)) gene ligand-binding domain (LBD) represent a recognized mechanism of acquired resistance. Antiestrogens with improved efficacy versus tamoxifen might overcome the resistant phenotype in ER+ breast cancers. Bazedoxifene (BZA) is a potent antiestrogen that is clinically approved for use in hormone replacement therapies. We found that BZA possesses improved inhibitory potency against the Y537S and D538G ERα mutants compared to tamoxifen and has additional inhibitory activity in combination with the CDK4/6 inhibitor palbociclib. In addition, comprehensive biophysical and structural biology studies show BZA's selective estrogen receptor degrading (SERD) properties that override the stabilizing effects of the Y537S and D538G ERα mutations.
Data availability
X-ray crystallographic data were deposited in the PDB under the accession code 4XI3.
Article and author information
Author details
Funding
Susan G. Komen (PDF14301382)
- Sean W Fanning
- Geoffrey L Greene
National Cancer Institute (CCSG P30 CA08748)
- Sarat Chandarlapaty
Breast Cancer Research Foundation (BCRF-17-083)
- John A Katzenellenbogen
National Institutes of Health (R01CA204999)
- Sarat Chandarlapaty
U.S. Department of Defense (Breakthrough Award W81XWH-14-1-0360)
- Sean W Fanning
- Weiyi Toy
- Colin E Fowler
- Sarat Chandarlapaty
- Geoffrey L Greene
National Institutes of Health (R35GM124952)
- Yang Shen
National Science Foundation (CCF-1546278)
- Yang Shen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Charles L Sawyers, Memorial Sloan-Kettering Cancer Center, United States
Publication history
- Received: March 31, 2018
- Accepted: November 28, 2018
- Accepted Manuscript published: November 29, 2018 (version 1)
- Version of Record published: January 16, 2019 (version 2)
Copyright
© 2018, Fanning et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,715
- Page views
-
- 572
- Downloads
-
- 58
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Cell Biology
Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response and immune function. Analysing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signalling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.
-
- Cancer Biology
Osteosarcoma (OS) is the common primary bone cancer that affects mostly children and young adults. To augment the standard-of-care chemotherapy, we examined the possibility of protein-based therapy using mesenchymal stem cells (MSCs)-derived proteomes and OS-elevated proteins. While a conditioned medium (CM), collected from MSCs, did not present tumor-suppressing ability, the activation of PKA converted MSCs into induced tumor-suppressing cells (iTSCs). In a mouse model, the direct and hydrogel-assisted administration of CM inhibited tumor-induced bone destruction, and its effect was additive with cisplatin. CM was enriched with proteins such as calreticulin, which acted as an extracellular tumor suppressor by interacting with CD47. Notably, the level of CALR transcripts was elevated in OS tissues, together with other tumor-suppressing proteins, including histone H4, and PCOLCE. PCOLCE acted as an extracellular tumor-suppressing protein by interacting with amyloid precursor protein, a prognostic OS marker with poor survival. The results supported the possibility of employing a paradoxical strategy of utilizing OS transcriptomes for the treatment of OS.