MAPLE (Modular Automated Platform for Large-scale Experiments), a robot for integrated organism-handling and phenotyping

  1. Tom Alisch
  2. James D Crall
  3. Albert B Kao
  4. Dave Zucker
  5. Benjamin L de Bivort  Is a corresponding author
  1. Harvard University, United States
  2. FlySorter LLC, United States

Abstract

Lab organisms are valuable in part because of large-scale experiments like screens, but performing such experiments over long time periods by hand is arduous and error-prone. Organism-handling robots could revolutionize large-scale experiments in the way that liquid-handling robots accelerated molecular biology. We developed a Modular Automated Platform for Large-scale Experiments (MAPLE), an organism-handling robot capable of conducting lab tasks and experiments, and then deployed it to conduct common experiments in Saccharomyces cerevisiae, Caenorhabditis elegans, Physarum polycephalum, Bombus impatiens, and Drosophila melanogaster. Focusing on fruit flies, we developed a suite of experimental modules that permitted the automated collection of virgin females and execution of an intricate and laborious social behavior experiment. We discovered that 1) pairs of flies exhibit persistent idiosyncrasies in social behavior, which 2) require olfaction and vision, and 3) social interaction network structure is stable over days. These diverse examples demonstrate MAPLE's versatility for automating experimental biology.

Data availability

CAD files for MAPLE can be found at https://github.com/FlySorterLLC/MAPLEHardware.Control software for MAPLE including scripts for the experiments described here can be found at https://github.com/FlySorterLLC/MAPLEControlSoftware.Raw data and analysis scripts can be found at https://zenodo.org/record/1119131#.Wj7SYlQ­eRc.These materials are also available at http://lab.debivort.org/MAPLE.

Article and author information

Author details

  1. Tom Alisch

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. James D Crall

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8981-3782
  3. Albert B Kao

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Dave Zucker

    FlySorter LLC, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Benjamin L de Bivort

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    debivort@oeb.harvard.edu
    Competing interests
    Benjamin L de Bivort, Benjamin de Bivort is on the scientific advisory board of FlySorter, LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6165-7696

Funding

Alfred P. Sloan Foundation

  • Benjamin L de Bivort

Esther A. and Joseph Klingenstein Fund

  • Benjamin L de Bivort

National Science Foundation

  • Benjamin L de Bivort

Winslow Foundation

  • James D Crall

James S. McDonnell Foundation

  • Albert B Kao

National Institutes of Health

  • Dave Zucker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: March 31, 2018
  2. Accepted: August 11, 2018
  3. Accepted Manuscript published: August 17, 2018 (version 1)
  4. Version of Record published: October 18, 2018 (version 2)
  5. Version of Record updated: January 18, 2019 (version 3)

Copyright

© 2018, Alisch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,734
    views
  • 540
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Alisch
  2. James D Crall
  3. Albert B Kao
  4. Dave Zucker
  5. Benjamin L de Bivort
(2018)
MAPLE (Modular Automated Platform for Large-scale Experiments), a robot for integrated organism-handling and phenotyping
eLife 7:e37166.
https://doi.org/10.7554/eLife.37166

Share this article

https://doi.org/10.7554/eLife.37166

Further reading

    1. Neuroscience
    David J Herzfeld
    Insight

    Abnormal activity in the cerebellar nuclei can be used to predict motor symptoms and induce them experimentally, pointing to potential therapeutic strategies.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.