MAPLE (Modular Automated Platform for Large-scale Experiments), a robot for integrated organism-handling and phenotyping

  1. Tom Alisch
  2. James D Crall
  3. Albert B Kao
  4. Dave Zucker
  5. Benjamin L de Bivort  Is a corresponding author
  1. Harvard University, United States
  2. FlySorter LLC, United States

Abstract

Lab organisms are valuable in part because of large-scale experiments like screens, but performing such experiments over long time periods by hand is arduous and error-prone. Organism-handling robots could revolutionize large-scale experiments in the way that liquid-handling robots accelerated molecular biology. We developed a Modular Automated Platform for Large-scale Experiments (MAPLE), an organism-handling robot capable of conducting lab tasks and experiments, and then deployed it to conduct common experiments in Saccharomyces cerevisiae, Caenorhabditis elegans, Physarum polycephalum, Bombus impatiens, and Drosophila melanogaster. Focusing on fruit flies, we developed a suite of experimental modules that permitted the automated collection of virgin females and execution of an intricate and laborious social behavior experiment. We discovered that 1) pairs of flies exhibit persistent idiosyncrasies in social behavior, which 2) require olfaction and vision, and 3) social interaction network structure is stable over days. These diverse examples demonstrate MAPLE's versatility for automating experimental biology.

Data availability

CAD files for MAPLE can be found at https://github.com/FlySorterLLC/MAPLEHardware.Control software for MAPLE including scripts for the experiments described here can be found at https://github.com/FlySorterLLC/MAPLEControlSoftware.Raw data and analysis scripts can be found at https://zenodo.org/record/1119131#.Wj7SYlQ­eRc.These materials are also available at http://lab.debivort.org/MAPLE.

Article and author information

Author details

  1. Tom Alisch

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. James D Crall

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8981-3782
  3. Albert B Kao

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Dave Zucker

    FlySorter LLC, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Benjamin L de Bivort

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    debivort@oeb.harvard.edu
    Competing interests
    Benjamin L de Bivort, Benjamin de Bivort is on the scientific advisory board of FlySorter, LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6165-7696

Funding

Alfred P. Sloan Foundation

  • Benjamin L de Bivort

Esther A. and Joseph Klingenstein Fund

  • Benjamin L de Bivort

National Science Foundation

  • Benjamin L de Bivort

Winslow Foundation

  • James D Crall

James S. McDonnell Foundation

  • Albert B Kao

National Institutes of Health

  • Dave Zucker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: March 31, 2018
  2. Accepted: August 11, 2018
  3. Accepted Manuscript published: August 17, 2018 (version 1)
  4. Version of Record published: October 18, 2018 (version 2)
  5. Version of Record updated: January 18, 2019 (version 3)

Copyright

© 2018, Alisch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,709
    views
  • 539
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Alisch
  2. James D Crall
  3. Albert B Kao
  4. Dave Zucker
  5. Benjamin L de Bivort
(2018)
MAPLE (Modular Automated Platform for Large-scale Experiments), a robot for integrated organism-handling and phenotyping
eLife 7:e37166.
https://doi.org/10.7554/eLife.37166

Share this article

https://doi.org/10.7554/eLife.37166

Further reading

    1. Developmental Biology
    2. Neuroscience
    Jonathan AC Menzies, André Maia Chagas ... Claudio R Alonso
    Research Article

    Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene – which we term Movement Modulator (Motor) – as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.

    1. Neuroscience
    Emma Keppler, Susanna Molas
    Insight

    A social memory pathway connecting the ventral hippocampus, the lateral septum and the ventral tegmental area helps to regulate how mice react to unknown individuals.