Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death

  1. Haley Hieronymus
  2. Rajmohan Murali
  3. Amy Tin
  4. Kamlesh Yadav
  5. Wassim Abida
  6. Henrik Moller
  7. Daniel Berney
  8. Howard Scher
  9. Brett Carver
  10. Peter Scardino
  11. Nikolaus Schultz
  12. Barry Taylor
  13. Andrew Vickers
  14. Jack Cuzick
  15. Charles L Sawyers  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. Memorial Sloan-Kettering Cancer Center, United States
  3. Icahn School of Medicine at Mount Sinai, United States
  4. Kings College London, United Kingdom
  5. Queen Mary University of London, United Kingdom

Abstract

The level of copy number alteration (CNA), termed CNA burden, in the tumor genome is associated with recurrence of primary prostate cancer. Whether CNA burden is associated with prostate cancer survival or outcomes in other cancers is unknown. We analyzed the CNA landscape of conservatively treated prostate cancer in a biopsy and transurethral resection cohort, reflecting an increasingly common treatment approach. We find that CNA burden is prognostic for cancer-specific death, independent of standard clinical prognostic factors. More broadly, we find CNA burden is significantly associated with disease-free and overall survival in primary breast, endometrial, renal clear cell, thyroid, and colorectal cancer in TCGA cohorts. To assess clinical applicability, we validated these findings in an independent pan-cancer cohort of patients whose tumors were sequenced using a clinically-certified next generation sequencing assay (MSK-IMPACT), where prognostic value varied based on cancer type. This prognostic association was affected by incorporating tumor purity in some cohorts. Overall, CNA burden of primary and metastatic tumors is a prognostic factor, potentially modulated by sample purity and measurable by current clinical sequencing.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files and reference materials. The conservative treatment TAPG copy number cohort array data was deposited in NCBI GEO under accession number GSE103665 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103665, reviewer access token czwruyesnzqbbyn).

The following data sets were generated

Article and author information

Author details

  1. Haley Hieronymus

    Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  2. Rajmohan Murali

    Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6988-4295
  3. Amy Tin

    Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  4. Kamlesh Yadav

    Department of Urology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  5. Wassim Abida

    Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  6. Henrik Moller

    Department of Cancer Epidemiology, Population and Global Health, Kings College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Daniel Berney

    Department of Molecular Oncology, Queen Mary University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Howard Scher

    Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  9. Brett Carver

    Department of Urology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  10. Peter Scardino

    Department of Urology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  11. Nikolaus Schultz

    Marie-Josée and Henry R Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  12. Barry Taylor

    Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  13. Andrew Vickers

    Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  14. Jack Cuzick

    Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
  15. Charles L Sawyers

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    For correspondence
    sawyersc@mskcc.org
    Competing interests
    Charles L Sawyers, Senior Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4955-6475

Funding

Howard Hughes Medical Institute

  • Charles L Sawyers

National Institutes of Health (CA193837)

  • Charles L Sawyers

Prostate Cancer Foundation

  • Kamlesh Yadav

National Institutes of Health (CA092629)

  • Charles L Sawyers

National Institutes of Health (CA155169)

  • Charles L Sawyers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Hieronymus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,963
    views
  • 1,082
    downloads
  • 215
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haley Hieronymus
  2. Rajmohan Murali
  3. Amy Tin
  4. Kamlesh Yadav
  5. Wassim Abida
  6. Henrik Moller
  7. Daniel Berney
  8. Howard Scher
  9. Brett Carver
  10. Peter Scardino
  11. Nikolaus Schultz
  12. Barry Taylor
  13. Andrew Vickers
  14. Jack Cuzick
  15. Charles L Sawyers
(2018)
Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death
eLife 7:e37294.
https://doi.org/10.7554/eLife.37294

Share this article

https://doi.org/10.7554/eLife.37294

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.