Abstract

An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements changes during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.

Data availability

Sequencing data have been deposited in GEO under accession code GSE114494.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jürgen Jänes

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Yan Dong

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Michael Schoof

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Jacques Serizay

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Alex Appert

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Chiara Cerrato

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Carson Woodbury

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Ron Chen

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  9. Carolina Gemma

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  10. Ni Huang

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8849-038X
  11. Djem Kissiov

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  12. Przemyslaw Stempor

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9464-7475
  13. Annette Steward

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  14. Eva Zeiser

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  15. Sascha Sauer

    Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    No competing interests declared.
  16. Julie Ahringer

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ja219@cam.ac.uk
    Competing interests
    Julie Ahringer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7074-4051

Funding

Wellcome (101863)

  • Jürgen Jänes
  • Yan Dong
  • Alex Appert
  • Chiara Cerrato
  • Ron Chen
  • Carolina Gemma
  • Ni Huang
  • Przemyslaw Stempor
  • Annette Steward
  • Eva Zeiser
  • Julie Ahringer

Medical Research Council

  • Jacques Serizay

European Commission (FP7/2007-2013)

  • Sascha Sauer
  • Julie Ahringer

Wellcome (97679)

  • Jürgen Jänes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Jänes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,718
    views
  • 1,123
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jürgen Jänes
  2. Yan Dong
  3. Michael Schoof
  4. Jacques Serizay
  5. Alex Appert
  6. Chiara Cerrato
  7. Carson Woodbury
  8. Ron Chen
  9. Carolina Gemma
  10. Ni Huang
  11. Djem Kissiov
  12. Przemyslaw Stempor
  13. Annette Steward
  14. Eva Zeiser
  15. Sascha Sauer
  16. Julie Ahringer
(2018)
Chromatin accessibility dynamics across C. elegans development and ageing
eLife 7:e37344.
https://doi.org/10.7554/eLife.37344

Share this article

https://doi.org/10.7554/eLife.37344

Further reading

    1. Chromosomes and Gene Expression
    Chileleko Siachisumo, Sara Luzzi ... David J Elliott
    Research Advance

    Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.

    1. Chromosomes and Gene Expression
    Moran Kelbert, Antonio Jordán-Pla ... Mordechai Choder
    Research Article

    To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1’s dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1’s relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1’s co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1’s two modes of transcription regulation remains to be examined.