Morphogenetic degeneracies in the actomyosin cortex

  1. Sundar Ram Naganathan  Is a corresponding author
  2. Sebastian Fürthauer
  3. Josana Rodriguez
  4. Bruno Thomas Fievet
  5. Frank Jülicher
  6. Julie Ahringer
  7. Carlo Vittorio Cannistraci
  8. Stephan W Grill  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Newcastle University, United Kingdom
  4. University of Cambridge, United Kingdom
  5. Technische Universität Dresden, Germany

Abstract

One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a 'morphogenetic degeneracy' where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sundar Ram Naganathan

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    sundar.naganathan@epfl.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5106-8687
  2. Sebastian Fürthauer

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Josana Rodriguez

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  4. Bruno Thomas Fievet

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  6. Julie Ahringer

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Julie Ahringer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7074-4051
  7. Carlo Vittorio Cannistraci

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0100-8410
  8. Stephan W Grill

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    For correspondence
    stephan.grill@tu-dresden.de
    Competing interests
    No competing interests declared.

Funding

Deutsche Forschungsgemeinschaft (SPP 1782)

  • Stephan W Grill

ITN (641639)

  • Stephan W Grill

Human Frontier Science Program (LT000078/2016)

  • Sundar Ram Naganathan

Human Frontier Science Program (LT000871/2014)

  • Sebastian Fürthauer

European Research Council (281903)

  • Stephan W Grill

ITN (281903)

  • Stephan W Grill

Human Frontier Science Program (RGP0023/2014)

  • Stephan W Grill

Max-Planck-Gesellschaft (Open-access funding)

  • Sundar Ram Naganathan

Deutsche Forschungsgemeinschaft (GSC 97)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/2)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/3)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/4)

  • Stephan W Grill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: April 18, 2018
  2. Accepted: October 16, 2018
  3. Accepted Manuscript published: October 22, 2018 (version 1)
  4. Version of Record published: November 9, 2018 (version 2)
  5. Version of Record updated: November 13, 2018 (version 3)

Copyright

© 2018, Naganathan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,814
    views
  • 493
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sundar Ram Naganathan
  2. Sebastian Fürthauer
  3. Josana Rodriguez
  4. Bruno Thomas Fievet
  5. Frank Jülicher
  6. Julie Ahringer
  7. Carlo Vittorio Cannistraci
  8. Stephan W Grill
(2018)
Morphogenetic degeneracies in the actomyosin cortex
eLife 7:e37677.
https://doi.org/10.7554/eLife.37677

Share this article

https://doi.org/10.7554/eLife.37677

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.