Morphogenetic degeneracies in the actomyosin cortex

  1. Sundar Ram Naganathan  Is a corresponding author
  2. Sebastian Fürthauer
  3. Josana Rodriguez
  4. Bruno Thomas Fievet
  5. Frank Jülicher
  6. Julie Ahringer
  7. Carlo Vittorio Cannistraci
  8. Stephan W Grill  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Newcastle University, United Kingdom
  4. University of Cambridge, United Kingdom
  5. Technische Universität Dresden, Germany

Abstract

One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a 'morphogenetic degeneracy' where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sundar Ram Naganathan

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    sundar.naganathan@epfl.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5106-8687
  2. Sebastian Fürthauer

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Josana Rodriguez

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  4. Bruno Thomas Fievet

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  6. Julie Ahringer

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Julie Ahringer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7074-4051
  7. Carlo Vittorio Cannistraci

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0100-8410
  8. Stephan W Grill

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    For correspondence
    stephan.grill@tu-dresden.de
    Competing interests
    No competing interests declared.

Funding

Deutsche Forschungsgemeinschaft (SPP 1782)

  • Stephan W Grill

ITN (641639)

  • Stephan W Grill

Human Frontier Science Program (LT000078/2016)

  • Sundar Ram Naganathan

Human Frontier Science Program (LT000871/2014)

  • Sebastian Fürthauer

European Research Council (281903)

  • Stephan W Grill

ITN (281903)

  • Stephan W Grill

Human Frontier Science Program (RGP0023/2014)

  • Stephan W Grill

Max-Planck-Gesellschaft (Open-access funding)

  • Sundar Ram Naganathan

Deutsche Forschungsgemeinschaft (GSC 97)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/2)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/3)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/4)

  • Stephan W Grill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: April 18, 2018
  2. Accepted: October 16, 2018
  3. Accepted Manuscript published: October 22, 2018 (version 1)
  4. Version of Record published: November 9, 2018 (version 2)
  5. Version of Record updated: November 13, 2018 (version 3)

Copyright

© 2018, Naganathan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,780
    views
  • 490
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sundar Ram Naganathan
  2. Sebastian Fürthauer
  3. Josana Rodriguez
  4. Bruno Thomas Fievet
  5. Frank Jülicher
  6. Julie Ahringer
  7. Carlo Vittorio Cannistraci
  8. Stephan W Grill
(2018)
Morphogenetic degeneracies in the actomyosin cortex
eLife 7:e37677.
https://doi.org/10.7554/eLife.37677

Share this article

https://doi.org/10.7554/eLife.37677

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.