Morphogenetic degeneracies in the actomyosin cortex

  1. Sundar Ram Naganathan  Is a corresponding author
  2. Sebastian Fürthauer
  3. Josana Rodriguez
  4. Bruno Thomas Fievet
  5. Frank Jülicher
  6. Julie Ahringer
  7. Carlo Vittorio Cannistraci
  8. Stephan W Grill  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Newcastle University, United Kingdom
  4. University of Cambridge, United Kingdom
  5. Technische Universität Dresden, Germany

Abstract

One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a 'morphogenetic degeneracy' where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sundar Ram Naganathan

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    sundar.naganathan@epfl.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5106-8687
  2. Sebastian Fürthauer

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Josana Rodriguez

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  4. Bruno Thomas Fievet

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  6. Julie Ahringer

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Julie Ahringer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7074-4051
  7. Carlo Vittorio Cannistraci

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0100-8410
  8. Stephan W Grill

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    For correspondence
    stephan.grill@tu-dresden.de
    Competing interests
    No competing interests declared.

Funding

Deutsche Forschungsgemeinschaft (SPP 1782)

  • Stephan W Grill

ITN (641639)

  • Stephan W Grill

Human Frontier Science Program (LT000078/2016)

  • Sundar Ram Naganathan

Human Frontier Science Program (LT000871/2014)

  • Sebastian Fürthauer

European Research Council (281903)

  • Stephan W Grill

ITN (281903)

  • Stephan W Grill

Human Frontier Science Program (RGP0023/2014)

  • Stephan W Grill

Max-Planck-Gesellschaft (Open-access funding)

  • Sundar Ram Naganathan

Deutsche Forschungsgemeinschaft (GSC 97)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/2)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/3)

  • Stephan W Grill

Deutsche Forschungsgemeinschaft (GR 3271/4)

  • Stephan W Grill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Naganathan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,909
    views
  • 503
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sundar Ram Naganathan
  2. Sebastian Fürthauer
  3. Josana Rodriguez
  4. Bruno Thomas Fievet
  5. Frank Jülicher
  6. Julie Ahringer
  7. Carlo Vittorio Cannistraci
  8. Stephan W Grill
(2018)
Morphogenetic degeneracies in the actomyosin cortex
eLife 7:e37677.
https://doi.org/10.7554/eLife.37677

Share this article

https://doi.org/10.7554/eLife.37677

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.