Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state

  1. Agata Butryn
  2. Stephan Woike
  3. Savera Jagathpala Shetty
  4. David Thomas Auble
  5. Karl-Peter Hopfner  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. University of Virginia Health System, United States

Abstract

Swi2/Snf2 ATPases remodel protein:DNA complexes in all of the fundamental chromosome‑associated processes. The single‑subunit remodeler Mot1 dissociates TATA box-binding protein (TBP):DNA complexes and provides a simple model for obtaining structural insights into the action of Swi2/Snf2 ATPases. Previously we reported how the N-terminal domain of Mot1 it binds TBP, NC2 and DNA, but the location of the C-terminal ATPase domain remained unclear (Butryn et al., 2015). Here, we report the crystal structure of the near full-length Mot1 from Chaetomium thermophilum. Our data show that Mot1 adopts a ring like structure with a catalytically inactive resting state of the ATPase. Biochemical analysis suggests that TBP binding switches Mot1 into an ATP hydrolysis-competent conformation. Combined with our previous results, these data significantly improve the structural model for the complete Mot1:TBP:DNA complex and suggest a general mechanism for Mot1 action.

Data availability

The coordinates and structure factors are deposited in the Protein Data Bank under accession code 6G7E. All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and Figure 2-figure supplement 1.

The following data sets were generated

Article and author information

Author details

  1. Agata Butryn

    Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5227-4770
  2. Stephan Woike

    Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Savera Jagathpala Shetty

    Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David Thomas Auble

    Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Karl-Peter Hopfner

    Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
    For correspondence
    hopfner@genzentrum.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4528-8357

Funding

National Institutes of Health (GM055763)

  • David Thomas Auble

European Commission (ERC Advanced Grant ATMMACHINE)

  • Karl-Peter Hopfner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geeta J Narlikar, University of California, San Francisco, United States

Version history

  1. Received: May 1, 2018
  2. Accepted: October 4, 2018
  3. Accepted Manuscript published: October 5, 2018 (version 1)
  4. Version of Record published: October 15, 2018 (version 2)
  5. Version of Record updated: October 24, 2018 (version 3)

Copyright

© 2018, Butryn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,549
    views
  • 258
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agata Butryn
  2. Stephan Woike
  3. Savera Jagathpala Shetty
  4. David Thomas Auble
  5. Karl-Peter Hopfner
(2018)
Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state
eLife 7:e37774.
https://doi.org/10.7554/eLife.37774

Share this article

https://doi.org/10.7554/eLife.37774

Further reading

    1. Structural Biology and Molecular Biophysics
    Colin H Peters, Rohit K Singh ... John R Bankston
    Research Article

    Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.