Prolonged cross-bridge binding triggers muscle dysfunction in a fly model of myosin-based hypertrophic cardiomyopathy

  1. William A Kronert
  2. Kaylyn M Bell
  3. Meera C Viswanathan
  4. Girish C Melkani
  5. Adriana S Trujillo
  6. Alice Huang
  7. Anju Melkani
  8. Anthony Cammarato
  9. Douglas M Swank  Is a corresponding author
  10. Sanford I Bernstein  Is a corresponding author
  1. San Diego State University, United States
  2. Rensselaer Polytechnic Institute, United States
  3. Johns Hopkins University, United States

Abstract

K146N is a dominant mutation in human β-cardiac myosin heavy chain, which causes hypertrophic cardiomyopathy. We examined how Drosophila muscle responds to this mutation and integratively analyzed the biochemical, physiological and mechanical foundations of the disease. ATPase assays, actin motility, and indirect flight muscle mechanics suggest at least two rate constants of the cross-bridge cycle are altered by the mutation: increased myosin attachment to actin and decreased detachment, yielding prolonged binding. This increases isometric force generation, but also resistive force and work absorption during cyclical contractions, resulting in decreased work, power output, flight ability and degeneration of flight muscle sarcomere morphology. Consistent with prolonged cross-bridge binding serving as the mechanistic basis of the disease and with human phenotypes, 146N/+ hearts are hypercontractile with increased tension generation periods, decreased diastolic/systolic diameters and myofibrillar disarray. This suggests that screening mutated Drosophila hearts could rapidly identify hypertrophic cardiomyopathy alleles and treatments.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. William A Kronert

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaylyn M Bell

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meera C Viswanathan

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Girish C Melkani

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adriana S Trujillo

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alice Huang

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anju Melkani

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anthony Cammarato

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Douglas M Swank

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    For correspondence
    swankd@rpi.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Sanford I Bernstein

    Department of Biology, San Diego State University, San Diego, United States
    For correspondence
    sbernstein@sdsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7094-5390

Funding

National Institutes of Health (R37GM032443)

  • Sanford I Bernstein

National Institutes of Health (R01HL124091)

  • Anthony Cammarato

National Institutes of Health (R01AR064274)

  • Douglas M Swank

Rees-Steely Research Foundation (Graduate Student Fellowship)

  • Adriana S Trujillo

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Copyright

© 2018, Kronert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,197
    views
  • 254
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William A Kronert
  2. Kaylyn M Bell
  3. Meera C Viswanathan
  4. Girish C Melkani
  5. Adriana S Trujillo
  6. Alice Huang
  7. Anju Melkani
  8. Anthony Cammarato
  9. Douglas M Swank
  10. Sanford I Bernstein
(2018)
Prolonged cross-bridge binding triggers muscle dysfunction in a fly model of myosin-based hypertrophic cardiomyopathy
eLife 7:e38064.
https://doi.org/10.7554/eLife.38064

Share this article

https://doi.org/10.7554/eLife.38064

Further reading

    1. Cell Biology
    2. Neuroscience
    Sara Bitar, Timo Baumann ... Axel Methner
    Research Article Updated

    Parkinson’s disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination. We here discovered a heightened propensity of CISD1 to form dimers in Pink1 mutant flies and in dopaminergic neurons from PINK1 mutation patients. The dimer consists of two monomers that are covalently linked by a disulfide bridge. In this conformation CISD1 cannot coordinate the iron-sulfur cofactor. Overexpressing Cisd, the Drosophila ortholog of CISD1, and a mutant Cisd incapable of binding the iron-sulfur cluster in Drosophila reduced climbing ability and lifespan. This was more pronounced with mutant Cisd and aggravated in Pink1 mutant flies. Complete loss of Cisd, in contrast, rescued all detrimental effects of Pink1 mutation on climbing ability, wing posture, dopamine levels, lifespan, and mitochondrial ultrastructure. Our results suggest that Cisd, probably iron-depleted Cisd, operates downstream of Pink1 shedding light on PD pathophysiology and implicating CISD1 as a potential therapeutic target.

    1. Cell Biology
    Roberto Notario Manzano, Thibault Chaze ... Christel Brou
    Research Article

    Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.