Prolonged cross-bridge binding triggers muscle dysfunction in a fly model of myosin-based hypertrophic cardiomyopathy

  1. William A Kronert
  2. Kaylyn M Bell
  3. Meera C Viswanathan
  4. Girish C Melkani
  5. Adriana S Trujillo
  6. Alice Huang
  7. Anju Melkani
  8. Anthony Cammarato
  9. Douglas M Swank  Is a corresponding author
  10. Sanford I Bernstein  Is a corresponding author
  1. San Diego State University, United States
  2. Rensselaer Polytechnic Institute, United States
  3. Johns Hopkins University, United States

Abstract

K146N is a dominant mutation in human β-cardiac myosin heavy chain, which causes hypertrophic cardiomyopathy. We examined how Drosophila muscle responds to this mutation and integratively analyzed the biochemical, physiological and mechanical foundations of the disease. ATPase assays, actin motility, and indirect flight muscle mechanics suggest at least two rate constants of the cross-bridge cycle are altered by the mutation: increased myosin attachment to actin and decreased detachment, yielding prolonged binding. This increases isometric force generation, but also resistive force and work absorption during cyclical contractions, resulting in decreased work, power output, flight ability and degeneration of flight muscle sarcomere morphology. Consistent with prolonged cross-bridge binding serving as the mechanistic basis of the disease and with human phenotypes, 146N/+ hearts are hypercontractile with increased tension generation periods, decreased diastolic/systolic diameters and myofibrillar disarray. This suggests that screening mutated Drosophila hearts could rapidly identify hypertrophic cardiomyopathy alleles and treatments.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. William A Kronert

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaylyn M Bell

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meera C Viswanathan

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Girish C Melkani

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adriana S Trujillo

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alice Huang

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anju Melkani

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anthony Cammarato

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Douglas M Swank

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    For correspondence
    swankd@rpi.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Sanford I Bernstein

    Department of Biology, San Diego State University, San Diego, United States
    For correspondence
    sbernstein@sdsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7094-5390

Funding

National Institutes of Health (R37GM032443)

  • Sanford I Bernstein

National Institutes of Health (R01HL124091)

  • Anthony Cammarato

National Institutes of Health (R01AR064274)

  • Douglas M Swank

Rees-Steely Research Foundation (Graduate Student Fellowship)

  • Adriana S Trujillo

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Copyright

© 2018, Kronert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,238
    views
  • 259
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William A Kronert
  2. Kaylyn M Bell
  3. Meera C Viswanathan
  4. Girish C Melkani
  5. Adriana S Trujillo
  6. Alice Huang
  7. Anju Melkani
  8. Anthony Cammarato
  9. Douglas M Swank
  10. Sanford I Bernstein
(2018)
Prolonged cross-bridge binding triggers muscle dysfunction in a fly model of myosin-based hypertrophic cardiomyopathy
eLife 7:e38064.
https://doi.org/10.7554/eLife.38064

Share this article

https://doi.org/10.7554/eLife.38064

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.