1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation

  1. Ryan D Ferrao
  2. Heidi Wallweber
  3. Patrick J Lupardus  Is a corresponding author
  1. Genentech Inc, United States
Research Article
  • Cited 18
  • Views 2,664
  • Annotations
Cite this article as: eLife 2018;7:e38089 doi: 10.7554/eLife.38089

Abstract

Cytokines and interferons initiate intracellular signaling via receptor dimerization and activation of Janus kinases (JAKs). How JAKs structurally respond to changes in receptor conformation induced by ligand binding is not known. Here we present two crystal structures of the human JAK2 FERM and SH2 domains bound to Leptin receptor (LEPR) and Erythropoietin receptor (EPOR), which identify a novel dimeric conformation for JAK2. This 2:2 JAK2/receptor dimer, observed in both structures, identifies a previously uncharacterized receptor interaction essential to dimer formation that is mediated by a membrane-proximal peptide motif called the 'switch' region. Mutation of the receptor switch region disrupts STAT phosphorylation but does not affect JAK2 binding, indicating that receptor-mediated formation of the JAK2 FERM dimer is required for kinase activation. These data uncover the structural and molecular basis for how a cytokine-bound active receptor dimer brings together two JAK2 molecules to stimulate JAK2 kinase activity.

Data availability

Coordinates and structure factors have been deposited into the RCSB database as PDB ID 6E2Q (JAK2/EPOR) and PDB ID 6E2P (JAK2/LEPR).

The following data sets were generated

Article and author information

Author details

  1. Ryan D Ferrao

    Department of Structural Biology, Genentech Inc, South San Francisco, United States
    Competing interests
    Ryan D Ferrao, employee of Genentech, Inc. during the period when this work was performed. The author declares they have no competing interests..
  2. Heidi Wallweber

    Department of Structural Biology, Genentech Inc, South San Francisco, United States
    Competing interests
    Heidi Wallweber, employee of Genentech, Inc. during the period when this work was performed. The author declares they have no competing interests..
  3. Patrick J Lupardus

    Department of Structural Biology, Genentech Inc, South San Francisco, United States
    For correspondence
    lupardus.patrick@gene.com
    Competing interests
    Patrick J Lupardus, employee of Genentech, Inc. during the period when this work was performed. The author declares they have no competing interests..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8662-074X

Funding

No external funding was received for this work.

Reviewing Editor

  1. Yibing Shan, DE Shaw Research, United States

Publication history

  1. Received: May 4, 2018
  2. Accepted: July 24, 2018
  3. Accepted Manuscript published: July 25, 2018 (version 1)
  4. Version of Record published: August 6, 2018 (version 2)

Copyright

© 2018, Ferrao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,664
    Page views
  • 523
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Giulia Bandini et al.
    Research Article Updated

    Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Maren Heimhalt et al.
    Research Article

    The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR’s PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.