Aurora kinase A localises to mitochondria to control organelle dynamics and energy production

  1. Giulia Bertolin  Is a corresponding author
  2. Anne-Laure Bulteau
  3. Marie-Clotilde Alves-Guerra
  4. Agnes Burel
  5. Marie-Thérèse Lavault
  6. Olivia Gavard
  7. Stephanie Le Bras
  8. Jean-Philippe Gagné
  9. Guy G Poirier
  10. Roland Le Borgne
  11. Claude Prigent  Is a corresponding author
  12. Marc Tramier  Is a corresponding author
  1. CNRS, UMR 6290, France
  2. ENS Lyon, France
  3. Inserm U1016, Institut Cochin, France
  4. UMS CNRS 3480- US INSERM 018, Université de Rennes 1, France
  5. Laval University, Canada

Abstract

Many epithelial cancers show cell cycle dysfunction tightly correlated with the overexpression of the serine/threonine kinase Aurora A (AURKA). Its role in mitotic progression has been extensively characterised, and evidence for new AURKA functions emerges. Here, we reveal that AURKA is located and imported in mitochondria in several human cancer cell lines. Mitochondrial AURKA impacts on two organelle functions: mitochondrial dynamics and energy production. When AURKA is expressed at endogenous levels during interphase, it induces mitochondrial fragmentation independently from RALA. Conversely, AURKA enhances mitochondrial fusion and ATP production when it is over-expressed. We demonstrate that AURKA directly regulates mitochondrial functions and that AURKA over-expression promotes metabolic reprogramming by increasing mitochondrial interconnectivity. Our work paves the way to anti-cancer therapeutics based on the simultaneous targeting of mitochondrial functions and AURKA inhibition.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Giulia Bertolin

    CNRS, UMR 6290, Rennes, France
    For correspondence
    giulia.bertolin@univ-rennes1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7359-5733
  2. Anne-Laure Bulteau

    ENS Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Clotilde Alves-Guerra

    Inserm U1016, Institut Cochin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Agnes Burel

    Microscopy Rennes Imaging Centre, SFR Biosit, UMS CNRS 3480- US INSERM 018, Université de Rennes 1, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie-Thérèse Lavault

    Microscopy Rennes Imaging Centre, SFR Biosit, UMS CNRS 3480- US INSERM 018, Université de Rennes 1, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Olivia Gavard

    CNRS, UMR 6290, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephanie Le Bras

    CNRS, UMR 6290, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Philippe Gagné

    Centre de Recherche du CHU de Quebec, Laval University, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Guy G Poirier

    Centre de recherche du CHU de Quebec, Laval University, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Roland Le Borgne

    CNRS, UMR 6290, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6892-278X
  11. Claude Prigent

    CNRS, UMR 6290, Rennes, France
    For correspondence
    claude.prigent@univ-rennes1.fr
    Competing interests
    The authors declare that no competing interests exist.
  12. Marc Tramier

    CNRS, UMR 6290, Rennes, France
    For correspondence
    marc.tramier@univ-rennes1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8200-6446

Funding

ARC (post-doc grant)

  • Giulia Bertolin

Ligue Contre le Cancer (Grand ouest gant)

  • Marc Tramier

Fondation Tourre (post-doc gant)

  • Giulia Bertolin

Agence Nationale de la Recherche (KinBioFRET)

  • Roland Le Borgne
  • Claude Prigent
  • Marc Tramier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jody Rosenblatt, University of Utah, United States

Version history

  1. Received: May 16, 2018
  2. Accepted: August 1, 2018
  3. Accepted Manuscript published: August 2, 2018 (version 1)
  4. Version of Record published: September 14, 2018 (version 2)

Copyright

© 2018, Bertolin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,163
    views
  • 838
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giulia Bertolin
  2. Anne-Laure Bulteau
  3. Marie-Clotilde Alves-Guerra
  4. Agnes Burel
  5. Marie-Thérèse Lavault
  6. Olivia Gavard
  7. Stephanie Le Bras
  8. Jean-Philippe Gagné
  9. Guy G Poirier
  10. Roland Le Borgne
  11. Claude Prigent
  12. Marc Tramier
(2018)
Aurora kinase A localises to mitochondria to control organelle dynamics and energy production
eLife 7:e38111.
https://doi.org/10.7554/eLife.38111

Share this article

https://doi.org/10.7554/eLife.38111

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).