Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange

  1. Shion An Lim
  2. Eric Richard Bolin
  3. Susan Marqusee  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

The conformations populated during protein folding have been studied for decades; yet, their evolutionary importance remains largely unexplored. Ancestral sequence reconstruction allows access to proteins across evolutionary time, and new methods such as pulsed-labeling hydrogen exchange coupled with mass spectrometry allow determination of folding intermediate structures at near amino-acid resolution. Here, we combine these techniques to monitor the folding of the ribonuclease H family along the evolutionary lineages of T. thermophilus and E. coli RNase H. All homologs and ancestral proteins studied populate a similar folding intermediate despite being separated by billions of years of evolution. Even though this conformation is conserved, the pathway leading to it has diverged over evolutionary time, and rational mutations can alter this trajectory. Our results demonstrate that evolutionary processes can affect the energy landscape to preserve or alter specific features of a protein's folding pathway.

Data availability

All data generated or analyzed during this study are included in the manuscript main text, supporting files, and source data

Article and author information

Author details

  1. Shion An Lim

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2136-2732
  2. Eric Richard Bolin

    Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Susan Marqusee

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    marqusee@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7648-2163

Funding

National Institute of General Medical Sciences (GM050945)

  • Shion An Lim
  • Eric Richard Bolin
  • Susan Marqusee

National Science Foundation (Graduate Research Fellowship)

  • Shion An Lim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,622
    views
  • 520
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shion An Lim
  2. Eric Richard Bolin
  3. Susan Marqusee
(2018)
Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange
eLife 7:e38369.
https://doi.org/10.7554/eLife.38369

Share this article

https://doi.org/10.7554/eLife.38369