1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

INAVA-ARNO complexes bridge mucosal barrier function with inflammatory signaling

  1. Phi H Luong
  2. Matija Hedl
  3. Jie Yan
  4. Tao Zuo
  5. Tian-Min Fu
  6. Xiaomo Jiang
  7. Jay R Thiagarajah
  8. Steen H Hansen
  9. Cammie F Lesser
  10. Hao Wu
  11. Clara Abraham
  12. Wayne I Lencer  Is a corresponding author
  1. Harvard Medical School, United States
  2. Yale University, United States
  3. Novartis Institutes for Biomedical Research, United States
  4. Massachusetts General Hospital, United States
Research Article
  • Cited 7
  • Views 1,072
  • Annotations
Cite this article as: eLife 2018;7:e38539 doi: 10.7554/eLife.38539

Abstract

Homeostasis at mucosal surfaces requires cross-talk between the environment and barrier epithelial cells. Disruption of barrier function typifies mucosal disease. Here we elucidate a bifunctional role in coordinating this cross-talk for the inflammatory bowel disease risk-gene INAVA. Both activities require INAVA's DUF3338 domain (renamed CUPID). CUPID stably binds the cytohesin ARF-GEF ARNO to effect lateral membrane F-actin assembly underlying cell-cell junctions and barrier function. Unexpectedly, when bound to CUPID, ARNO affects F-actin dynamics in the absence of its canonical activity as a guanine nucleotide-exchange factor. Upon exposure to IL-1β, INAVA relocates to form cytosolic puncta, where CUPID amplifies TRAF6-dependent polyubiquitination and inflammatory signaling. In this case, ARNO binding to CUPID negatively-regulates polyubiquitination and the inflammatory response. INAVA and ARNO act similarly in primary human macrophages responding to IL-1β and NOD2 agonists. Thus, INAVA-CUPID exhibits dual functions, coordinated directly by ARNO, that bridge epithelial barrier function with extracellular signals and inflammation.

Data availability

All data analysed during this study are included in the manuscript. Source data have been provided for Figure 3 C-F.

Article and author information

Author details

  1. Phi H Luong

    Department of Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Matija Hedl

    Department of Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Jie Yan

    Department of Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  4. Tao Zuo

    Department of Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Tian-Min Fu

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Xiaomo Jiang

    Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    Xiaomo Jiang, is affiliated with Novartis. The author has no other competing interests to declare.
  7. Jay R Thiagarajah

    Department of Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Steen H Hansen

    Department of Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Cammie F Lesser

    Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Hao Wu

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  11. Clara Abraham

    Department of Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Wayne I Lencer

    Department of Pediatrics, Harvard Medical School, Boston, United States
    For correspondence
    Wayne.Lencer@childrens.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7346-2730

Funding

National Institutes of Health (T32HD007466)

  • Phi H Luong

Crohn's and Colitis Foundation of America (Career Development Award)

  • Phi H Luong

Boston Children's Hospital (Rubin-Wolpow Fellowship)

  • Phi H Luong

National Institutes of Health (DK099097)

  • Clara Abraham

National Institutes of Health (DK048106)

  • Wayne I Lencer

National Institutes of Health (DK084424)

  • Wayne I Lencer

National Institutes of Health (P30 DK034854)

  • Wayne I Lencer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kiyoshi Takeda, Osaka University, Japan

Publication history

  1. Received: May 21, 2018
  2. Accepted: October 15, 2018
  3. Accepted Manuscript published: October 25, 2018 (version 1)
  4. Version of Record published: November 9, 2018 (version 2)

Copyright

© 2018, Luong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,072
    Page views
  • 205
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Jugal Mohapatra et al.
    Tools and Resources

    Serine ADP-ribosylation (ADPr) is a DNA damage-induced post-translational modification catalyzed by the PARP1/2:HPF1 complex. As the list of PARP1/2:HPF1 substrates continues to expand, there is a need for technologies to prepare mono- and poly-ADP-ribosylated proteins for biochemical interrogation. Here we investigate the unique peptide ADPr activities catalyzed by PARP1 in the absence and presence of HPF1. We then exploit these activities to develop a method that facilitates installation of ADP-ribose polymers onto peptides with precise control over chain length and modification site. Importantly, the enzymatically mono- and poly-ADP-ribosylated peptides are fully compatible with protein ligation technologies. This chemoenzymatic protein synthesis strategy was employed to assemble a series of full-length, ADP-ribosylated histones and show that ADPr at H2BS6 or H3S10 converts nucleosomes into robust substrates for the chromatin remodeler ALC1. We found ALC1 preferentially remodels 'activated' substrates within heterogeneous mononucleosome populations and asymmetrically ADP-ribosylated dinucleosome substrates, and that nucleosome serine ADPr is sufficient to stimulate ALC1 activity in nuclear extracts. Our study identifies a biochemical function for nucleosome serine ADPr and describes a new, highly modular approach to explore the impact that site-specific serine mono- and poly-ADPr have on protein function.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Fang Huang et al.
    Research Article Updated

    The positive transcription elongation factor b (P-TEFb) is a critical coactivator for transcription of most cellular and viral genes, including those of HIV. While P-TEFb is regulated by 7SK snRNA in proliferating cells, P-TEFb is absent due to diminished levels of CycT1 in quiescent and terminally differentiated cells, which has remained unexplored. In these cells, we found that CycT1 not bound to CDK9 is rapidly degraded. Moreover, productive CycT1:CDK9 interactions are increased by PKC-mediated phosphorylation of CycT1 in human cells. Conversely, dephosphorylation of CycT1 by PP1 reverses this process. Thus, PKC inhibitors or removal of PKC by chronic activation results in P-TEFb disassembly and CycT1 degradation. This finding not only recapitulates P-TEFb depletion in resting CD4+ T cells but also in anergic T cells. Importantly, our studies reveal mechanisms of P-TEFb inactivation underlying T cell quiescence, anergy, and exhaustion as well as proviral latency and terminally differentiated cells.