Abstract

The nuclear RNA exosome complex mediates the processing of structured RNAs and the decay of aberrant non-coding RNAs, an important function particularly in human cells. Most mechanistic studies to date have focused on the yeast system. Here, we reconstituted and studied the properties of a recombinant 14-subunit human nuclear exosome complex. In biochemical assays, the human exosome embeds a longer RNA channel than its yeast counterpart. The 3.8 Å resolution cryo-EM structure of the core complex bound to a single-stranded RNA reveals that the RNA channel path is formed by two distinct features of the hDIS3 exoribonuclease: an open conformation and a domain organization more similar to bacterial RNase II than to yeast Rrp44. The cryo-EM structure of the holo-complex shows how obligate nuclear cofactors position the hMTR4 helicase at the entrance of the core complex, suggesting a striking structural conservation from lower to higher eukaryotes.

Data availability

The cryo-EM density maps are deposited in the Electron Microscopy Data Bank under accession numbers EMD-0127 and EMD-0128. The atomic model is deposited in the Protein Data Bank (PDB) under accession number 6H25.

The following data sets were generated
    1. Schuller JM
    2. Falk S
    3. Basquin J
    4. Conti E
    (2018) Human nuclear RNA exosome EXO-14 complex (cryo-EM density map)
    Publicly available at the Electron Microscopy Data Bank (accession no: EMD-0127).
    1. Schuller JM
    2. Falk S
    3. Basquin J
    4. Conti E
    (2018) Cryo-EM density map
    Publicly available at the Electron Microscopy Data Bank (accession no: EMD-0128).

Article and author information

Author details

  1. Piotr Gerlach

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9599-7322
  2. Jan M Schuller

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9121-1764
  3. Fabien Bonneau

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8787-7662
  4. Jerome Basquin

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Reichelt

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Falk

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7848-4621
  7. Elena Conti

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    For correspondence
    conti@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1254-5588

Funding

European Molecular Biology Organization (ALTF 1008-2015)

  • Piotr Gerlach

European Commission (ERC-2016-ADG 740329 EXORICO)

  • Elena Conti

Deutsche Forschungsgemeinschaft (SFB646)

  • Elena Conti

Louis-Jeantet Foundation

  • Elena Conti

Max-Planck-Gesellschaft

  • Elena Conti

Deutsche Forschungsgemeinschaft (SFB1035)

  • Elena Conti

Deutsche Forschungsgemeinschaft (GRK1721)

  • Elena Conti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Gerlach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,339
    views
  • 598
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Piotr Gerlach
  2. Jan M Schuller
  3. Fabien Bonneau
  4. Jerome Basquin
  5. Peter Reichelt
  6. Sebastian Falk
  7. Elena Conti
(2018)
Distinct and evolutionary conserved structural features of the human nuclear exosome complex
eLife 7:e38686.
https://doi.org/10.7554/eLife.38686

Share this article

https://doi.org/10.7554/eLife.38686

Further reading

    1. Biochemistry and Chemical Biology
    Emily L Dearlove, Chatrin Chatrin ... Danny T Huang
    Research Article

    Ubiquitination typically involves covalent linking of ubiquitin (Ub) to a lysine residue on a protein substrate. Recently, new facets of this process have emerged, including Ub modification of non-proteinaceous substrates like ADP-ribose by the DELTEX E3 ligase family. Here, we show that the DELTEX family member DTX3L expands this non-proteinaceous substrate repertoire to include single-stranded DNA and RNA. Although the N-terminal region of DTX3L contains single-stranded nucleic acid binding domains and motifs, the minimal catalytically competent fragment comprises the C-terminal RING and DTC domains (RD). DTX3L-RD catalyses ubiquitination of the 3’-end of single-stranded DNA and RNA, as well as double-stranded DNA with a 3’ overhang of two or more nucleotides. This modification is reversibly cleaved by deubiquitinases. NMR and biochemical analyses reveal that the DTC domain binds single-stranded DNA and facilitates the catalysis of Ub transfer from RING-bound E2-conjugated Ub. Our study unveils the direct ubiquitination of nucleic acids by DTX3L, laying the groundwork for understanding its functional implications.

    1. Biochemistry and Chemical Biology
    Jaskamaljot Kaur Banwait, Liana Islam, Aaron L Lucius
    Research Article

    Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 are AAA+ motor proteins essential for proteome maintenance and thermal tolerance. ClpB and Hsp104 have been proposed to extract a polypeptide from an aggregate and processively translocate the chain through the axial channel of its hexameric ring structure. However, the mechanism of translocation and if this reaction is processive remains disputed. We reported that Hsp104 and ClpB are non-processive on unfolded model substrates. Others have reported that ClpB is able to processively translocate a mechanically unfolded polypeptide chain at rates over 240 amino acids (aa) per second. Here, we report the development of a single turnover stopped-flow fluorescence strategy that reports on processive protein unfolding catalyzed by ClpB. We show that when translocation catalyzed by ClpB is challenged by stably folded protein structure, the motor enzymatically unfolds the substrate at a rate of ~0.9 aa s−1 with a kinetic step-size of ~60 amino acids at sub-saturating [ATP]. We reconcile the apparent controversy by defining enzyme catalyzed protein unfolding and translocation as two distinct reactions with different mechanisms of action. We propose a model where slow unfolding followed by fast translocation represents an important mechanistic feature that allows the motor to rapidly translocate up to the next folded region or rapidly dissociate if no additional fold is encountered.