Abstract

The nuclear RNA exosome complex mediates the processing of structured RNAs and the decay of aberrant non-coding RNAs, an important function particularly in human cells. Most mechanistic studies to date have focused on the yeast system. Here, we reconstituted and studied the properties of a recombinant 14-subunit human nuclear exosome complex. In biochemical assays, the human exosome embeds a longer RNA channel than its yeast counterpart. The 3.8 Å resolution cryo-EM structure of the core complex bound to a single-stranded RNA reveals that the RNA channel path is formed by two distinct features of the hDIS3 exoribonuclease: an open conformation and a domain organization more similar to bacterial RNase II than to yeast Rrp44. The cryo-EM structure of the holo-complex shows how obligate nuclear cofactors position the hMTR4 helicase at the entrance of the core complex, suggesting a striking structural conservation from lower to higher eukaryotes.

Data availability

The cryo-EM density maps are deposited in the Electron Microscopy Data Bank under accession numbers EMD-0127 and EMD-0128. The atomic model is deposited in the Protein Data Bank (PDB) under accession number 6H25.

The following data sets were generated
    1. Schuller JM
    2. Falk S
    3. Basquin J
    4. Conti E
    (2018) Human nuclear RNA exosome EXO-14 complex (cryo-EM density map)
    Publicly available at the Electron Microscopy Data Bank (accession no: EMD-0127).
    1. Schuller JM
    2. Falk S
    3. Basquin J
    4. Conti E
    (2018) Cryo-EM density map
    Publicly available at the Electron Microscopy Data Bank (accession no: EMD-0128).

Article and author information

Author details

  1. Piotr Gerlach

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9599-7322
  2. Jan M Schuller

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9121-1764
  3. Fabien Bonneau

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8787-7662
  4. Jerome Basquin

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Reichelt

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Falk

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7848-4621
  7. Elena Conti

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    For correspondence
    conti@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1254-5588

Funding

European Molecular Biology Organization (ALTF 1008-2015)

  • Piotr Gerlach

European Commission (ERC-2016-ADG 740329 EXORICO)

  • Elena Conti

Deutsche Forschungsgemeinschaft (SFB646)

  • Elena Conti

Louis-Jeantet Foundation

  • Elena Conti

Max-Planck-Gesellschaft

  • Elena Conti

Deutsche Forschungsgemeinschaft (SFB1035)

  • Elena Conti

Deutsche Forschungsgemeinschaft (GRK1721)

  • Elena Conti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sjors HW Scheres, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: May 26, 2018
  2. Accepted: July 17, 2018
  3. Accepted Manuscript published: July 26, 2018 (version 1)
  4. Version of Record published: August 2, 2018 (version 2)

Copyright

© 2018, Gerlach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,249
    views
  • 592
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Piotr Gerlach
  2. Jan M Schuller
  3. Fabien Bonneau
  4. Jerome Basquin
  5. Peter Reichelt
  6. Sebastian Falk
  7. Elena Conti
(2018)
Distinct and evolutionary conserved structural features of the human nuclear exosome complex
eLife 7:e38686.
https://doi.org/10.7554/eLife.38686

Share this article

https://doi.org/10.7554/eLife.38686

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.