Adaptation to constant light requires Fic-mediated AMPylation of BiP to protect against reversible photoreceptor degeneration

  1. Andrew T Moehlman
  2. Amanda K Casey
  3. Kelly Servage
  4. Kim Orth  Is a corresponding author
  5. Helmut Krämer  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. HHMI/University of Texas Southwestern Medical Center, United States

Abstract

In response to environmental, developmental, and pathological stressors, cells engage homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein Response protects cells from the accumulation of misfolded proteins in the ER. Depending on ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the major ER chaperone and regulator of the Unfolded Protein Response. This work elucidates the importance of the reversible AMPylation of BiP in maintaining the Drosophila visual system in response to stress. After 72 hours of constant light, photoreceptors of fic-null and AMPylation-resistant BiPT366A mutants, but not wild-type flies, display loss of synaptic function, disintegration of rhabdomeres, and excessive activation of ER stress reporters. Strikingly, this phenotype is reversible: photoreceptors regain their structure and function within 72 hours once returned to a standard light:dark cycle. These findings show that Fic-mediated AMPylation of BiP is required for neurons to adapt to transient stress demands.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Andrew T Moehlman

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Amanda K Casey

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Kelly Servage

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Kim Orth

    Department of Molecular Biology, HHMI/University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    kim.orth@utsouthwestern.edu
    Competing interests
    Kim Orth, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0678-7620
  5. Helmut Krämer

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    helmut.kramer@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1167-2676

Funding

National Institute of General Medical Sciences (R01GM120196)

  • Helmut Krämer

National Eye Institute (RO1EY010199)

  • Helmut Krämer

Howard Hughes Medical Institute

  • Kim Orth

Welch Foundation (I-1561)

  • Kim Orth

Once Upon A Time Foundation

  • Kim Orth

National Science Foundation (1000176311)

  • Andrew T Moehlman

National Institute of General Medical Sciences (RO1GM115188)

  • Kim Orth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher G Burd, Yale School of Medicine, United States

Version history

  1. Received: May 29, 2018
  2. Accepted: July 16, 2018
  3. Accepted Manuscript published: July 17, 2018 (version 1)
  4. Accepted Manuscript updated: July 25, 2018 (version 2)
  5. Version of Record published: July 30, 2018 (version 3)

Copyright

© 2018, Moehlman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,964
    Page views
  • 226
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew T Moehlman
  2. Amanda K Casey
  3. Kelly Servage
  4. Kim Orth
  5. Helmut Krämer
(2018)
Adaptation to constant light requires Fic-mediated AMPylation of BiP to protect against reversible photoreceptor degeneration
eLife 7:e38752.
https://doi.org/10.7554/eLife.38752

Share this article

https://doi.org/10.7554/eLife.38752

Further reading

    1. Cell Biology
    2. Neuroscience
    Rachel L Doser, Kaz M Knight ... Frederic J Hoerndli
    Research Article

    Our understanding of mitochondrial signaling in the nervous system has been limited by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic model Caenorhabditis elegans, we were able to manipulate and measure mitochondrial ROS (reactive oxygen species) signaling of individual mitochondria as well as neuronal activity of single neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitochondrial ROS signaling in dendrites of excitatory glutamatergic C. elegans interneurons. Specifically, we show that following neuronal activity, dendritic mitochondria take up calcium (Ca2+) via the mitochondrial Ca2+ uniporter MCU-1 that results in an upregulation of mitochondrial ROS production. We also observed that mitochondria are positioned in close proximity to synaptic clusters of GLR-1, the C. elegans ortholog of the AMPA subtype of glutamate receptors that mediate neuronal excitation. We show that synaptic recruitment of GLR-1 is upregulated when MCU-1 function is pharmacologically or genetically impaired but is downregulated by mitoROS signaling. Thus, signaling from postsynaptic mitochondria may regulate excitatory synapse function to maintain neuronal homeostasis by preventing excitotoxicity and energy depletion.

    1. Cell Biology
    2. Developmental Biology
    Houyu Zhang, Yan Li ... Meng Xie
    Research Article

    Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.