Poor coherence in older people's speech is explained by impaired semantic and executive processes

  1. Paul Hoffman  Is a corresponding author
  2. Ekaterina Loginova
  3. Asatta Russell
  1. University of Edinburgh, United Kingdom

Abstract

The ability to speak coherently is essential for effective communication but declines with age: older people more frequently produce tangential, off-topic speech. The cognitive factors underpinning this decline are poorly understood. We predicted that maintaining coherence relies on effective regulation of activated semantic knowledge about the world, and particularly on the selection of currently relevant semantic representations to drive speech production. To test this, we collected 840 speech samples along with measures of executive and semantic ability from 60 young and older adults, using a novel computational method to quantify coherence. Semantic selection ability predicted coherence, as did level of semantic knowledge and a measure of domain-general executive ability. These factors fully accounted for the age-related coherence deficit. Our results indicate that maintaining coherence in speech becomes more challenging as people age because they accumulate more knowledge but are less able to effectively regulate how it is activated and used.

Data availability

All raw data and code required to replicate the analyses are available at https://osf.io/8atfn/DOI 10.17605/OSF.IO/8ATFN

Article and author information

Author details

  1. Paul Hoffman

    Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    p.hoffman@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3248-3225
  2. Ekaterina Loginova

    Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Asatta Russell

    Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Medical Research Council (MR/K026992/1)

  • Paul Hoffman

Biotechnology and Biological Sciences Research Council (MR/K026992/1)

  • Paul Hoffman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elizabeth Jefferies, University of York, United Kingdom

Ethics

Human subjects: All participants provided informed consent and the study was approved by the University of Edinburgh Psychology Research Ethics Committee.(120-1415/3).

Version history

  1. Received: June 4, 2018
  2. Accepted: September 3, 2018
  3. Accepted Manuscript published: September 4, 2018 (version 1)
  4. Version of Record published: September 21, 2018 (version 2)

Copyright

© 2018, Hoffman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,237
    views
  • 319
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Hoffman
  2. Ekaterina Loginova
  3. Asatta Russell
(2018)
Poor coherence in older people's speech is explained by impaired semantic and executive processes
eLife 7:e38907.
https://doi.org/10.7554/eLife.38907

Share this article

https://doi.org/10.7554/eLife.38907

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.