Poor coherence in older people's speech is explained by impaired semantic and executive processes

  1. Paul Hoffman  Is a corresponding author
  2. Ekaterina Loginova
  3. Asatta Russell
  1. University of Edinburgh, United Kingdom

Abstract

The ability to speak coherently is essential for effective communication but declines with age: older people more frequently produce tangential, off-topic speech. The cognitive factors underpinning this decline are poorly understood. We predicted that maintaining coherence relies on effective regulation of activated semantic knowledge about the world, and particularly on the selection of currently relevant semantic representations to drive speech production. To test this, we collected 840 speech samples along with measures of executive and semantic ability from 60 young and older adults, using a novel computational method to quantify coherence. Semantic selection ability predicted coherence, as did level of semantic knowledge and a measure of domain-general executive ability. These factors fully accounted for the age-related coherence deficit. Our results indicate that maintaining coherence in speech becomes more challenging as people age because they accumulate more knowledge but are less able to effectively regulate how it is activated and used.

Data availability

All raw data and code required to replicate the analyses are available at https://osf.io/8atfn/DOI 10.17605/OSF.IO/8ATFN

Article and author information

Author details

  1. Paul Hoffman

    Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    p.hoffman@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3248-3225
  2. Ekaterina Loginova

    Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Asatta Russell

    Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Medical Research Council (MR/K026992/1)

  • Paul Hoffman

Biotechnology and Biological Sciences Research Council (MR/K026992/1)

  • Paul Hoffman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided informed consent and the study was approved by the University of Edinburgh Psychology Research Ethics Committee.(120-1415/3).

Copyright

© 2018, Hoffman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,469
    views
  • 343
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Hoffman
  2. Ekaterina Loginova
  3. Asatta Russell
(2018)
Poor coherence in older people's speech is explained by impaired semantic and executive processes
eLife 7:e38907.
https://doi.org/10.7554/eLife.38907

Share this article

https://doi.org/10.7554/eLife.38907

Further reading

    1. Developmental Biology
    2. Neuroscience
    Jayanarayanan Sadanandan, Sithara Thomas ... Peeyush Kumar T
    Research Article

    The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator’s histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.

    1. Neuroscience
    GVS Devakinandan, Mark Terasaki, Adish Dani
    Research Article

    Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.