Abnormal oxidative metabolism in a quiet genomic background underlies clear cell papillary renal cell carcinoma
Abstract
While genomic sequencing routinely identifies oncogenic alterations for the majority of cancers, many tumors harbor no discernable driver lesion. Here, we describe the exceptional molecular phenotype of a genomically quiet kidney tumor, clear cell papillary renal cell carcinoma (CCPAP). In spite of a largely wild-type nuclear genome, CCPAP tumors exhibit severe depletion of mitochondrial DNA (mtDNA) and RNA and high levels of oxidative stress, reflecting a shift away from respiratory metabolism. Moreover, CCPAP tumors exhibit a distinct metabolic phenotype uniquely characterized by accumulation of the sugar alcohol sorbitol. Immunohistochemical staining of primary CCPAP tumor specimens recapitulates both the depletion of mtDNA-encoded proteins and a lipid-depleted metabolic phenotype, suggesting that the cytoplasmic clarity in CCPAP is primarily related to the presence of glycogen. These results argue for non-genetic profiling as a tool for the study of cancers of unknown driver.
Data availability
The new data generated in this study is primarily tumor/germline sequencing of primary human tumor specimens, and constitutes human subject data. To protect the privacy of the human subjects, we have included somatic mutation calls in Figure 4 Source Data 1, but have withheld germline information. Source data have been provided for Figures 1-5. Controlled access for TCGA sequencing data (RNA-sequencing and whole exome sequencing of CCPAP tumors) are available via GDC commons data portal (https://gdc.cancer.gov/) by querying the 5 CCPAP sample IDs (BP-4760, BP-4784, BP-4795, DV-5567, BP-4177). Data from the The Cancer Genome Atlas Pan-Cancer Analysis Project related to this studied can be downloaded directly from firebrowse.org at the url http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/KIPAN/20160128/.
Article and author information
Author details
Funding
Damon Runyon Cancer Research Foundation (Dale F. Frey Award for Breakthrough Scientists DFS-09-14)
- Costas Lyssiotis
Sidney Kimmel Foundation for Cancer Research (Sidney Kimmel Center for Prostate and Urologic Cancers)
- Abraham Ari Hakimi
American Urological Association (Research Scholar Award)
- Abraham Ari Hakimi
V Foundation for Cancer Research (Junior Scholar Award V2016-009)
- Costas Lyssiotis
Sidney Kimmel Foundation for Cancer Research (Kimmel Scholar Award SKF-16-005)
- Costas Lyssiotis
National Institutes of Health (DK097153)
- Costas Lyssiotis
Charles Woodson Research Fund
- Costas Lyssiotis
the UM Pediatric Brain Tumor Initiative
- Costas Lyssiotis
University of Michigan's Program in Chemical Biology (Graduate Assistance in Areas of National Need (GAANN) award)
- Daniel Kremer
National Cancer Institute (P30 CA008748)
- Jianing Xu
- Ed Reznik
- Gunes Gundem
- Philip Jonsson
- Judy Sarungbam
- Anna Bialik
- Francisco Sanchez-Vega
- Jozefina Casuscelli
- Nikolaus Schultz
- Yiyu Dong
- Paul Russo
- Jonathan A Coleman
- Elli Papaemmanuil
- Ying-Bei Chen
- Victor E Reuter
- Chris Sander
- Satish K Tickoo
- Abraham Ari Hakimi
National Cancer Institute (P30 CA046592)
- Costas Lyssiotis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Frozen samples and genomic data were acquired through MSKCC IRB approved tissue protocol 06-107.
Copyright
© 2019, Xu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,530
- views
-
- 336
- downloads
-
- 38
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Stem Cells and Regenerative Medicine
Despite advances in therapeutic approaches, lung cancer remains the leading cause of cancer-related deaths. To understand the molecular programs underlying lung cancer initiation and maintenance, we focused on stem cell programs that are normally extinguished with differentiation but can be reactivated during oncogenesis. Here, we have used extensive genetic modeling and patient-derived xenografts (PDXs) to identify a dual role for Msi2: as a signal that acts initially to sensitize cells to transformation, and subsequently to drive tumor propagation. Using Msi reporter mice, we found that Msi2-expressing cells were marked by a pro-oncogenic landscape and a preferential ability to respond to Ras and p53 mutations. Consistent with this, genetic deletion of Msi2 in an autochthonous Ras/p53-driven lung cancer model resulted in a marked reduction of tumor burden, delayed progression, and a doubling of median survival. Additionally, this dependency was conserved in human disease as inhibition of Msi2 impaired tumor growth in PDXs. Mechanistically, Msi2 triggered a broad range of pathways critical for tumor growth, including several novel effectors of lung adenocarcinoma. Collectively, these findings reveal a critical role for Msi2 in aggressive lung adenocarcinoma, lend new insight into the biology of this disease, and identify potential new therapeutic targets.
-
- Cancer Biology
Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.