1. Computational and Systems Biology
  2. Genetics and Genomics
Download icon

New insights into the cellular temporal response to proteostatic stress

  1. Justin Rendleman
  2. Zhe Cheng
  3. Shuvadeep Maity
  4. Nicolai Kastelic
  5. Mathias Munschauer
  6. Kristina Allgoewer
  7. Guoshou Teo
  8. Yun Bin Matteo Zhang
  9. Amy Lei
  10. Brian Parker
  11. Markus Landthaler
  12. Lindsay Freeberg
  13. Scott Kuersten
  14. Hyungwon Choi
  15. Christine Vogel  Is a corresponding author
  1. New York University, United States
  2. Berlin Institute for Medical Systems Biology, Germany
  3. Illumina, Inc, United States
  4. National University Singapore, Singapore
Tools and Resources
  • Cited 18
  • Views 4,909
  • Annotations
Cite this article as: eLife 2018;7:e39054 doi: 10.7554/eLife.39054

Abstract

Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress-dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3' untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.

Article and author information

Author details

  1. Justin Rendleman

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8152-7127
  2. Zhe Cheng

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  3. Shuvadeep Maity

    Department of Biology, New York University, New York City, United States
    Competing interests
    No competing interests declared.
  4. Nicolai Kastelic

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  5. Mathias Munschauer

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Kristina Allgoewer

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  7. Guoshou Teo

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  8. Yun Bin Matteo Zhang

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  9. Amy Lei

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  10. Brian Parker

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  11. Markus Landthaler

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  12. Lindsay Freeberg

    Illumina, Inc, Madison, United States
    Competing interests
    Lindsay Freeberg, affiliated with Illumina Inc. No other competing interests to declare.
  13. Scott Kuersten

    Illumina, Inc, Madison, United States
    Competing interests
    Scott Kuersten, affiliated with Illumina Inc. No other competing interests to declare.
  14. Hyungwon Choi

    National University Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  15. Christine Vogel

    Department of Biology, New York University, New York, United States
    For correspondence
    cvogel@nyu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2856-3118

Funding

National Institutes of Health (1R01GM113237-01)

  • Justin Rendleman
  • Zhe Cheng
  • Shuvadeep Maity
  • Guoshou Teo
  • Christine Vogel

National Institutes of Health (1R35GM127089-01)

  • Justin Rendleman
  • Shuvadeep Maity
  • Christine Vogel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Juan Valcárcel, Centre de Regulació Genòmica (CRG), Barcelona, Spain

Publication history

  1. Received: June 8, 2018
  2. Accepted: September 28, 2018
  3. Accepted Manuscript published: October 1, 2018 (version 1)
  4. Version of Record published: October 12, 2018 (version 2)

Copyright

© 2018, Rendleman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,909
    Page views
  • 866
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Amit Frishberg et al.
    Research Article Updated

    Human diseases arise in a complex ecosystem composed of disease mechanisms and the whole-body state. However, the precise nature of the whole-body state and its relations with disease remain obscure. Here we map similarities among clinical parameters in normal physiological settings, including a large collection of metabolic, hemodynamic, and immune parameters, and then use the mapping to dissect phenotypic states. We find that the whole-body state is faithfully represented by a quantitative two-dimensional model. One component of the whole-body state represents ‘metabolic syndrome’ (MetS) – a conventional way to determine the cardiometabolic state. The second component is decoupled from the classical MetS, suggesting a novel ‘non-classical MetS’ that is characterized by dozens of parameters, including dysregulated lipoprotein parameters (e.g. low free cholesterol in small high-density lipoproteins) and attenuated cytokine responses of immune cells to ex vivo stimulations. Both components are associated with disease, but differ in their particular associations, thus opening new avenues for improved personalized diagnosis and treatment. These results provide a practical paradigm to describe whole-body states and to dissect complex disease within the ecosystem of the human body.

    1. Computational and Systems Biology
    2. Neuroscience
    Shivesh Chaudhary et al.
    Research Article

    Although identifying cell names in dense image stacks is critical in analyzing functional whole-brain data enabling comparison across experiments, unbiased identification is very difficult, and relies heavily on researchers' experiences. Here we present a probabilistic-graphical-model framework, CRF_ID, based on Conditional Random Fields, for unbiased and automated cell identification. CRF_ID focuses on maximizing intrinsic similarity between shapes. Compared to existing methods, CRF_ID achieves higher accuracy on simulated and ground-truth experimental datasets, and better robustness against challenging noise conditions common in experimental data. CRF_ID can further boost accuracy by building atlases from annotated data in highly computationally efficient manner, and by easily adding new features (e.g. from new strains). We demonstrate cell annotation in C. elegans images across strains, animal orientations, and tasks including gene-expression localization, multi-cellular and whole-brain functional imaging experiments. Together, these successes demonstrate that unbiased cell annotation can facilitate biological discovery, and this approach may be valuable to annotation tasks for other systems.