1. Computational and Systems Biology
  2. Genetics and Genomics
Download icon

New insights into the cellular temporal response to proteostatic stress

  1. Justin Rendleman
  2. Zhe Cheng
  3. Shuvadeep Maity
  4. Nicolai Kastelic
  5. Mathias Munschauer
  6. Kristina Allgoewer
  7. Guoshou Teo
  8. Yun Bin Matteo Zhang
  9. Amy Lei
  10. Brian Parker
  11. Markus Landthaler
  12. Lindsay Freeberg
  13. Scott Kuersten
  14. Hyungwon Choi
  15. Christine Vogel  Is a corresponding author
  1. New York University, United States
  2. Berlin Institute for Medical Systems Biology, Germany
  3. Illumina, Inc, United States
  4. National University Singapore, Singapore
Tools and Resources
  • Cited 19
  • Views 5,434
  • Annotations
Cite this article as: eLife 2018;7:e39054 doi: 10.7554/eLife.39054

Abstract

Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress-dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3' untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus (Barrett et al., 2013; Edgar et al., 2002) and are accessible through GEO Series accession number GSE113171. The mass spectrometry data including the MaxQuant output files have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the dataset identifier PXD008575.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Justin Rendleman

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8152-7127
  2. Zhe Cheng

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  3. Shuvadeep Maity

    Department of Biology, New York University, New York City, United States
    Competing interests
    No competing interests declared.
  4. Nicolai Kastelic

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  5. Mathias Munschauer

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Kristina Allgoewer

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  7. Guoshou Teo

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  8. Yun Bin Matteo Zhang

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  9. Amy Lei

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  10. Brian Parker

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  11. Markus Landthaler

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  12. Lindsay Freeberg

    Illumina, Inc, Madison, United States
    Competing interests
    Lindsay Freeberg, affiliated with Illumina Inc. No other competing interests to declare.
  13. Scott Kuersten

    Illumina, Inc, Madison, United States
    Competing interests
    Scott Kuersten, affiliated with Illumina Inc. No other competing interests to declare.
  14. Hyungwon Choi

    National University Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  15. Christine Vogel

    Department of Biology, New York University, New York, United States
    For correspondence
    cvogel@nyu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2856-3118

Funding

National Institutes of Health (1R01GM113237-01)

  • Justin Rendleman
  • Zhe Cheng
  • Shuvadeep Maity
  • Guoshou Teo
  • Christine Vogel

National Institutes of Health (1R35GM127089-01)

  • Justin Rendleman
  • Shuvadeep Maity
  • Christine Vogel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Juan Valcárcel, Centre de Regulació Genòmica (CRG), Barcelona, Spain

Publication history

  1. Received: June 8, 2018
  2. Accepted: September 28, 2018
  3. Accepted Manuscript published: October 1, 2018 (version 1)
  4. Version of Record published: October 12, 2018 (version 2)

Copyright

© 2018, Rendleman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,434
    Page views
  • 903
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Hannah R Meredith et al.
    Research Article

    Human mobility is a core component of human behavior and its quantification is critical for understanding its impact on infectious disease transmission, traffic forecasting, access to resources and care, intervention strategies, and migratory flows. When mobility data are limited, spatial interaction models have been widely used to estimate human travel, but have not been extensively validated in low- and middle-income settings. Geographic, sociodemographic, and infrastructure differences may impact the ability for models to capture these patterns, particularly in rural settings. Here, we analyzed mobility patterns inferred from mobile phone data in four Sub-Saharan African countries to investigate the ability for variants on gravity and radiation models to estimate travel. Adjusting the gravity model such that parameters were fit to different trip types, including travel between more or less populated areas and/or different regions, improved model fit in all four countries. This suggests that alternative models may be more useful in these settings and better able to capture the range of mobility patterns observed.

    1. Computational and Systems Biology
    Daniel Griffith, Alex S Holehouse
    Tools and Resources

    The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine learning approaches are increasingly being utilized due to their ability to infer complex nonlinear patterns from high-dimensional data. Despite their effectiveness, machine learning (and in particular deep learning) approaches are not always accessible or easy to implement for those with limited computational expertise. Here we present PARROT, a general framework for training and applying deep learning-based predictors on large protein datasets. Using an internal recurrent neural network architecture, PARROT is capable of tackling both classification and regression tasks while only requiring raw protein sequences as input. We showcase the potential uses of PARROT on three diverse machine learning tasks: predicting phosphorylation sites, predicting transcriptional activation function of peptides generated by high-throughput reporter assays, and predicting the fibrillization propensity of amyloid beta with data generated by deep mutational scanning. Through these examples, we demonstrate that PARROT is easy to use, performs comparably to state-of-the-art computational tools, and is applicable for a wide array of biological problems.