New insights into the cellular temporal response to proteostatic stress

  1. Justin Rendleman
  2. Zhe Cheng
  3. Shuvadeep Maity
  4. Nicolai Kastelic
  5. Mathias Munschauer
  6. Kristina Allgoewer
  7. Guoshou Teo
  8. Yun Bin Matteo Zhang
  9. Amy Lei
  10. Brian Parker
  11. Markus Landthaler
  12. Lindsay Freeberg
  13. Scott Kuersten
  14. Hyungwon Choi
  15. Christine Vogel  Is a corresponding author
  1. New York University, United States
  2. Berlin Institute for Medical Systems Biology, Germany
  3. Illumina, Inc, United States
  4. National University Singapore, Singapore

Abstract

Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress-dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3' untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus (Barrett et al., 2013; Edgar et al., 2002) and are accessible through GEO Series accession number GSE113171. The mass spectrometry data including the MaxQuant output files have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the dataset identifier PXD008575.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Justin Rendleman

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8152-7127
  2. Zhe Cheng

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  3. Shuvadeep Maity

    Department of Biology, New York University, New York City, United States
    Competing interests
    No competing interests declared.
  4. Nicolai Kastelic

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  5. Mathias Munschauer

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Kristina Allgoewer

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  7. Guoshou Teo

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  8. Yun Bin Matteo Zhang

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  9. Amy Lei

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  10. Brian Parker

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  11. Markus Landthaler

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  12. Lindsay Freeberg

    Illumina, Inc, Madison, United States
    Competing interests
    Lindsay Freeberg, affiliated with Illumina Inc. No other competing interests to declare.
  13. Scott Kuersten

    Illumina, Inc, Madison, United States
    Competing interests
    Scott Kuersten, affiliated with Illumina Inc. No other competing interests to declare.
  14. Hyungwon Choi

    National University Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  15. Christine Vogel

    Department of Biology, New York University, New York, United States
    For correspondence
    cvogel@nyu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2856-3118

Funding

National Institutes of Health (1R01GM113237-01)

  • Justin Rendleman
  • Zhe Cheng
  • Shuvadeep Maity
  • Guoshou Teo
  • Christine Vogel

National Institutes of Health (1R35GM127089-01)

  • Justin Rendleman
  • Shuvadeep Maity
  • Christine Vogel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Juan Valcárcel, Centre de Regulació Genòmica (CRG), Barcelona, Spain

Version history

  1. Received: June 8, 2018
  2. Accepted: September 28, 2018
  3. Accepted Manuscript published: October 1, 2018 (version 1)
  4. Version of Record published: October 12, 2018 (version 2)

Copyright

© 2018, Rendleman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,903
    Page views
  • 1,069
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin Rendleman
  2. Zhe Cheng
  3. Shuvadeep Maity
  4. Nicolai Kastelic
  5. Mathias Munschauer
  6. Kristina Allgoewer
  7. Guoshou Teo
  8. Yun Bin Matteo Zhang
  9. Amy Lei
  10. Brian Parker
  11. Markus Landthaler
  12. Lindsay Freeberg
  13. Scott Kuersten
  14. Hyungwon Choi
  15. Christine Vogel
(2018)
New insights into the cellular temporal response to proteostatic stress
eLife 7:e39054.
https://doi.org/10.7554/eLife.39054

Share this article

https://doi.org/10.7554/eLife.39054

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.