New insights into the cellular temporal response to proteostatic stress

  1. Justin Rendleman
  2. Zhe Cheng
  3. Shuvadeep Maity
  4. Nicolai Kastelic
  5. Mathias Munschauer
  6. Kristina Allgoewer
  7. Guoshou Teo
  8. Yun Bin Matteo Zhang
  9. Amy Lei
  10. Brian Parker
  11. Markus Landthaler
  12. Lindsay Freeberg
  13. Scott Kuersten
  14. Hyungwon Choi
  15. Christine Vogel  Is a corresponding author
  1. New York University, United States
  2. Berlin Institute for Medical Systems Biology, Germany
  3. Illumina, Inc, United States
  4. National University Singapore, Singapore

Abstract

Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress-dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3' untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus (Barrett et al., 2013; Edgar et al., 2002) and are accessible through GEO Series accession number GSE113171. The mass spectrometry data including the MaxQuant output files have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the dataset identifier PXD008575.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Justin Rendleman

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8152-7127
  2. Zhe Cheng

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  3. Shuvadeep Maity

    Department of Biology, New York University, New York City, United States
    Competing interests
    No competing interests declared.
  4. Nicolai Kastelic

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  5. Mathias Munschauer

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Kristina Allgoewer

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  7. Guoshou Teo

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  8. Yun Bin Matteo Zhang

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  9. Amy Lei

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  10. Brian Parker

    Department of Biology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  11. Markus Landthaler

    Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  12. Lindsay Freeberg

    Illumina, Inc, Madison, United States
    Competing interests
    Lindsay Freeberg, affiliated with Illumina Inc. No other competing interests to declare.
  13. Scott Kuersten

    Illumina, Inc, Madison, United States
    Competing interests
    Scott Kuersten, affiliated with Illumina Inc. No other competing interests to declare.
  14. Hyungwon Choi

    National University Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  15. Christine Vogel

    Department of Biology, New York University, New York, United States
    For correspondence
    cvogel@nyu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2856-3118

Funding

National Institutes of Health (1R01GM113237-01)

  • Justin Rendleman
  • Zhe Cheng
  • Shuvadeep Maity
  • Guoshou Teo
  • Christine Vogel

National Institutes of Health (1R35GM127089-01)

  • Justin Rendleman
  • Shuvadeep Maity
  • Christine Vogel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Rendleman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,282
    views
  • 1,107
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin Rendleman
  2. Zhe Cheng
  3. Shuvadeep Maity
  4. Nicolai Kastelic
  5. Mathias Munschauer
  6. Kristina Allgoewer
  7. Guoshou Teo
  8. Yun Bin Matteo Zhang
  9. Amy Lei
  10. Brian Parker
  11. Markus Landthaler
  12. Lindsay Freeberg
  13. Scott Kuersten
  14. Hyungwon Choi
  15. Christine Vogel
(2018)
New insights into the cellular temporal response to proteostatic stress
eLife 7:e39054.
https://doi.org/10.7554/eLife.39054

Share this article

https://doi.org/10.7554/eLife.39054

Further reading

    1. Computational and Systems Biology
    Nobuhisa Umeki, Yoshiyuki Kabashima, Yasushi Sako
    Research Article

    The RAS-MAPK system plays an important role in regulating various cellular processes, including growth, differentiation, apoptosis, and transformation. Dysregulation of this system has been implicated in genetic diseases and cancers affecting diverse tissues. To better understand the regulation of this system, we employed information flow analysis based on transfer entropy (TE) between the activation dynamics of two key elements in cells stimulated with EGF: SOS, a guanine nucleotide exchanger for the small GTPase RAS, and RAF, a RAS effector serine/threonine kinase. TE analysis allows for model-free assessment of the timing, direction, and strength of the information flow regulating the system response. We detected significant amounts of TE in both directions between SOS and RAF, indicating feedback regulation. Importantly, the amount of TE did not simply follow the input dose or the intensity of the causal reaction, demonstrating the uniqueness of TE. TE analysis proposed regulatory networks containing multiple tracks and feedback loops and revealed temporal switching in the reaction pathway primarily responsible for reaction control. This proposal was confirmed by the effects of an MEK inhibitor on TE. Furthermore, TE analysis identified the functional disorder of a SOS mutation associated with Noonan syndrome, a human genetic disease, of which the pathogenic mechanism has not been precisely known yet. TE assessment holds significant promise as a model-free analysis method of reaction networks in molecular pharmacology and pathology.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.