Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A

  1. Andy K M Lam
  2. Raimund Dutzler  Is a corresponding author
  1. University of Zürich, Switzerland

Abstract

TMEM16A is a ligand-gated anion channel that is activated by intracellular Ca2+. This channel contains two independent pores and closely apposed Ca2+ binding sites that are contained within each subunit of a homodimeric protein. Previously we characterized the influence of positively charged pore-lining residues on anion conduction (Paulino C. et. al., 2017). Here, we demonstrate the electrostatic control of permeation by the bound calcium ions in mouse TMEM16A using electrophysiology and Poisson-Boltzmann calculations. The currents of constitutively active mutants lose their outward rectification as a function of Ca2+ concentration due to the alleviation of energy barriers for anion conduction. This phenomenon originates from Coulombic interactions between the bound Ca2+ and permeating anions and thus demonstrates that an electrostatic gate imposed by the vacant binding site present in the sterically open pore, is released by Ca2+ binding to enable an otherwise sub-conductive pore to conduct with full capacity.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Andy K M Lam

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2983-3044
  2. Raimund Dutzler

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    For correspondence
    dutzler@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2193-6129

Funding

H2020 European Research Council (ERC no 339116 AnoBest)

  • Raimund Dutzler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Version history

  1. Received: June 14, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: October 12, 2018 (version 1)
  4. Version of Record published: October 19, 2018 (version 2)
  5. Version of Record updated: December 7, 2018 (version 3)

Copyright

© 2018, Lam & Dutzler

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,996
    views
  • 427
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andy K M Lam
  2. Raimund Dutzler
(2018)
Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A
eLife 7:e39122.
https://doi.org/10.7554/eLife.39122

Share this article

https://doi.org/10.7554/eLife.39122

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article Updated

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.