Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages

  1. Bridgette M Cumming
  2. Kelvin W Addicott
  3. John H Adamson
  4. Adrie JC Steyn  Is a corresponding author
  1. Africa Health Research Institute, South Africa

Abstract

How Mycobacterium tuberculosis (Mtb) rewires macrophage energy metabolism to facilitate survival is poorly characterized. Here, we used extracellular flux analysis to simultaneously measure the rates of glycolysis and respiration in real-time. Mtb infection induced a quiescent energy phenotype in human monocyte-derived macrophages and decelerated flux through glycolysis and the TCA cycle. In contrast, infection with the vaccine strain, M. bovis BCG, or dead Mtb induced glycolytic phenotypes with greater flux. Furthermore, Mtb reduced the mitochondrial dependency on glucose and increased the mitochondrial dependency on fatty acids, shifting this dependency from endogenous fatty acids in uninfected cells to exogenous fatty acids in infected macrophages. We demonstrate how quantifiable bioenergetic parameters of the host can be used to accurately measure and track disease, which will enable rapid quantifiable assessment of drug and vaccine efficacy. Our findings uncovered new paradigms for understanding the bioenergetic basis of host metabolic reprogramming by Mtb.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Bridgette M Cumming

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6977-765X
  2. Kelvin W Addicott

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  3. John H Adamson

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  4. Adrie JC Steyn

    Africa Health Research Institute, Durban, South Africa
    For correspondence
    adrie.steyn@ahri.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9177-8827

Funding

National Institutes of Health (R01AI111940)

  • Adrie JC Steyn

U.S. Department of Defense (PR121320)

  • Adrie JC Steyn

National Institutes of Health (R21127182)

  • Adrie JC Steyn

South African Medical Research Council

  • Adrie JC Steyn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human monocytes were isolated from buffy coats bought from the South African National Blood Service with approval from SANBS Human Research Ethics Committee (Clearance Certificate No. 2016/02)

Copyright

© 2018, Cumming et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,895
    views
  • 1,184
    downloads
  • 147
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bridgette M Cumming
  2. Kelvin W Addicott
  3. John H Adamson
  4. Adrie JC Steyn
(2018)
Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages
eLife 7:e39169.
https://doi.org/10.7554/eLife.39169

Share this article

https://doi.org/10.7554/eLife.39169

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.