Abstract

Cells constantly adapt to environmental fluctuations. These physiological changes require time and therefore cause a lag phase during which the cells do not function optimally. Interestingly, past exposure to an environmental condition can shorten the time needed to adapt when the condition re-occurs, even in daughter cells that never directly encountered the initial condition. Here, we use the molecular toolbox of Saccharomyces cerevisiae to systematically unravel the molecular mechanism underlying such history-dependent behavior in transitions between glucose and maltose. In contrast to previous hypotheses, the behavior does not depend on persistence of proteins involved in metabolism of a specific sugar. Instead, presence of glucose induces a gradual decline in the cells' ability to activate respiration, which is needed to metabolize alternative carbon sources. These results reveal how trans-generational transitions in central carbon metabolism generate history-dependent behavior in yeast, and provide a mechanistic framework for similar phenomena in other cell types.

Data availability

The RNA-seq and BAR-seq data-sets are deposited in GEO. The GEO accession number of BAR-Seq and RNA-Seq data are GSE116505 and GSE116246 respectively.

The following data sets were generated
    1. Cerulus B
    2. Jariani A
    (2018) BAR-Seq to study history-dependent behavior
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE116505).

Article and author information

Author details

  1. Bram Cerulus

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  2. Abbas Jariani

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  3. Gemma Perez-Samper

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Lieselotte Vermeersch

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5789-2220
  5. Julian M J Pietsch

    Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9992-2384
  6. Matthew M Crane

    Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  7. Aaron M New

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  8. Brigida Gallone

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  9. Miguel Roncoroni

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    Miguel Roncoroni, This author had substantial contributions to acquisition of data and doing the experiments.
  10. Maria C Dzialo

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  11. Sander K Govers

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0260-4054
  12. Jhana Hendrickx

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  13. Eva Galle

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  14. Maarten Coomans

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  15. Pieter Berden

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  16. Sara Verbandt

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  17. Peter S Swain

    Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7489-8587
  18. Kevin J Verstrepen

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    For correspondence
    kevin.verstrepen@kuleuven.vib.be
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3077-6219

Funding

Fonds Wetenschappelijk Onderzoek

  • Bram Cerulus
  • Lieselotte Vermeersch

Vlaams Instituut voor Biotechnologie

  • Kevin J Verstrepen

European Research Counsil (CoG682009)

  • Bram Cerulus
  • Abbas Jariani
  • Gemma Perez-Samper
  • Kevin J Verstrepen

Agentschap Innoveren & Ondernemen

  • Kevin J Verstrepen

AB-InBev-Baillet Latour Fund

  • Kevin J Verstrepen

Human Frontier Science Program (246 RGP0050/2013)

  • Abbas Jariani
  • Peter S Swain
  • Kevin J Verstrepen

SULSA Postdoctoral Exchange Scheme

  • Julian M J Pietsch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Cerulus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,219
    views
  • 921
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bram Cerulus
  2. Abbas Jariani
  3. Gemma Perez-Samper
  4. Lieselotte Vermeersch
  5. Julian M J Pietsch
  6. Matthew M Crane
  7. Aaron M New
  8. Brigida Gallone
  9. Miguel Roncoroni
  10. Maria C Dzialo
  11. Sander K Govers
  12. Jhana Hendrickx
  13. Eva Galle
  14. Maarten Coomans
  15. Pieter Berden
  16. Sara Verbandt
  17. Peter S Swain
  18. Kevin J Verstrepen
(2018)
Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources
eLife 7:e39234.
https://doi.org/10.7554/eLife.39234

Share this article

https://doi.org/10.7554/eLife.39234

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.