Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition

  1. José Luis Llácer
  2. Tanweer Hussain
  3. Adesh K Saini
  4. Jagpreet Singh Nanda
  5. Sukhvir Kaur
  6. Yuliya Gordiyenko
  7. Rakesh Kumar
  8. Alan G Hinnebusch  Is a corresponding author
  9. Jon R Lorsch  Is a corresponding author
  10. Venki Ramakrishnan  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. Indian Institute of Science, India
  3. Shoolini University of Biotechnology and Management Sciences, India
  4. National Institutes of Health, United States

Abstract

In eukaryotic translation initiation AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codons in vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.

Data availability

Five maps have been deposited in the EMDB with accession codes EMDB: 4328, EMDB: 4330, EMDB: 4331, EMDB: 4327, EMDB: 4329, for the sample 1 map, Map A, Map B, Map C1 and Map C2, respectively. Two atomic coordinate models have been deposited in the PDB with accession codes PDB: 6FYX, PDB: 6FYY, for models showing TC in conformation 1 and conformation 2, respectively.All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Tables 4 and 5 and Figures 4 and 5

The following data sets were generated

Article and author information

Author details

  1. José Luis Llácer

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5304-1795
  2. Tanweer Hussain

    Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
    Competing interests
    No competing interests declared.
  3. Adesh K Saini

    Shoolini University of Biotechnology and Management Sciences, Solan, India
    Competing interests
    No competing interests declared.
  4. Jagpreet Singh Nanda

    Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  5. Sukhvir Kaur

    Shoolini University of Biotechnology and Management Sciences, Solan, India
    Competing interests
    No competing interests declared.
  6. Yuliya Gordiyenko

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Rakesh Kumar

    Shoolini University of Biotechnology and Management Sciences, Solan, India
    Competing interests
    No competing interests declared.
  8. Alan G Hinnebusch

    Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    For correspondence
    alanh@mail.nih.gov
    Competing interests
    Alan G Hinnebusch, Reviewing editor, eLife.
  9. Jon R Lorsch

    Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    For correspondence
    jon.lorsch@nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4521-4999
  10. Venki Ramakrishnan

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    ramak@mrc-lmb.cam.ac.uk
    Competing interests
    No competing interests declared.

Funding

Medical Research Council (MC_U105184332)

  • Venki Ramakrishnan

Wellcome (WT096570)

  • Venki Ramakrishnan

Agouron Institute

  • Venki Ramakrishnan

Department of Science and Technology, Ministry of Science and Technology (Int/NZ/P-2/13)

  • Adesh K Saini

National Institutes of Health (GM62128)

  • Jon R Lorsch

Human Frontier Science Program (RGP-0028/2009)

  • Alan G Hinnebusch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,816
    views
  • 753
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. José Luis Llácer
  2. Tanweer Hussain
  3. Adesh K Saini
  4. Jagpreet Singh Nanda
  5. Sukhvir Kaur
  6. Yuliya Gordiyenko
  7. Rakesh Kumar
  8. Alan G Hinnebusch
  9. Jon R Lorsch
  10. Venki Ramakrishnan
(2018)
Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition
eLife 7:e39273.
https://doi.org/10.7554/eLife.39273

Share this article

https://doi.org/10.7554/eLife.39273

Further reading

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.

    1. Structural Biology and Molecular Biophysics
    Kazi A Hossain, Lukasz Nierzwicki ... Giulia Palermo
    Research Article

    xCas9 is an evolved variant of the CRISPR-Cas9 genome editing system, engineered to improve specificity and reduce undesired off-target effects. How xCas9 expands the DNA targeting capability of Cas9 by recognising a series of alternative protospacer adjacent motif (PAM) sequences while ignoring others is unknown. Here, we elucidate the molecular mechanism underlying xCas9’s expanded PAM recognition and provide critical insights for expanding DNA targeting. We demonstrate that while wild-type Cas9 enforces stringent guanine selection through the rigidity of its interacting arginine dyad, xCas9 introduces flexibility in R1335, enabling selective recognition of specific PAM sequences. This increased flexibility confers a pronounced entropic preference, which also improves recognition of the canonical TGG PAM. Furthermore, xCas9 enhances DNA binding to alternative PAM sequences during the early evolution cycles, while favouring binding to the canonical PAM in the final evolution cycle. This dual functionality highlights how xCas9 broadens PAM recognition and underscores the importance of fine-tuning the flexibility of the PAM-interacting cleft as a key strategy for expanding the DNA targeting potential of CRISPR-Cas systems. These findings deepen our understanding of DNA recognition in xCas9 and may apply to other CRISPR-Cas systems with similar PAM recognition requirements.