Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition
Abstract
In eukaryotic translation initiation AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codons in vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.
Data availability
Five maps have been deposited in the EMDB with accession codes EMDB: 4328, EMDB: 4330, EMDB: 4331, EMDB: 4327, EMDB: 4329, for the sample 1 map, Map A, Map B, Map C1 and Map C2, respectively. Two atomic coordinate models have been deposited in the PDB with accession codes PDB: 6FYX, PDB: 6FYY, for models showing TC in conformation 1 and conformation 2, respectively.All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Tables 4 and 5 and Figures 4 and 5
-
Structure of a partial yeast 48S preinitiation complex with eIF5 N-terminal domain (Map A)Electron Microscopy Data Bank, 4330.
-
Structure of a partial yeast 48S preinitiation complex with eIF5 N-terminal domain (Sample Map 1)Electron Microscopy Data Bank, 4328.
-
Structure of a partial yeast 48S preinitiation complex with eIF5 N-terminal domain (Map B)Electron Microscopy Data Bank, 4331.
-
Structure of a partial yeast 48S preinitiation complex with eIF5 N-terminal domain (Map C1)Electron Microscopy Data Bank, 4327.
-
Structure of a partial yeast 48S preinitiation complex with eIF5 N-terminal domain (Map C2)Electron Microscopy Data Bank, 4329.
Article and author information
Author details
Funding
Medical Research Council (MC_U105184332)
- Venki Ramakrishnan
Wellcome (WT096570)
- Venki Ramakrishnan
Agouron Institute
- Venki Ramakrishnan
Department of Science and Technology, Ministry of Science and Technology (Int/NZ/P-2/13)
- Adesh K Saini
National Institutes of Health (GM62128)
- Jon R Lorsch
Human Frontier Science Program (RGP-0028/2009)
- Alan G Hinnebusch
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Rachel Green, Johns Hopkins School of Medicine, United States
Publication history
- Received: June 26, 2018
- Accepted: November 21, 2018
- Accepted Manuscript published: November 26, 2018 (version 1)
- Accepted Manuscript updated: November 29, 2018 (version 2)
- Accepted Manuscript updated: November 30, 2018 (version 3)
- Version of Record published: December 18, 2018 (version 4)
- Version of Record updated: January 10, 2019 (version 5)
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 3,762
- Page views
-
- 653
- Downloads
-
- 53
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Mitochondrial ATP production in cardiac ventricular myocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local ventricular myocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients that powers ATP production. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane (IMM) and produces bicarbonate (HCO3-) in a reaction accelerated by carbonic anhydrase (CA). The bicarbonate level is tracked physiologically by a bicarbonate-activated adenylyl cyclase, soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular myocytes where it generates cAMP when activated by HCO3-. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space (IMS) by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein 1). Thus, mitochondrial ATP production is shown to be increased by bicarbonate-triggered sAC signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the cardiac mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in cardiac ventricular myocytes in health and disease.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
A complex interplay between structure, conformational dynamics and pharmacology defines distant regulation of G protein-coupled receptors.