Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila

  1. Matthew C W Oswald  Is a corresponding author
  2. Paul S Brooks
  3. Maarten F Zwart
  4. Amrita Mukherjee
  5. Ryan J H West
  6. Carlo N G Giachello
  7. Khomgrit Morarach
  8. Richard A Baines
  9. Sean T Sweeney
  10. Matthias Landgraf  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. University of Manchester, United Kingdom
  4. University of York, United Kingdom

Abstract

Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson's disease-linked protein DJ-1ß as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew C W Oswald

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mo364@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8586-9351
  2. Paul S Brooks

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maarten F Zwart

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amrita Mukherjee

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ryan J H West

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9873-2258
  6. Carlo N G Giachello

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Khomgrit Morarach

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard A Baines

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8571-4376
  9. Sean T Sweeney

    Department of Biology, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthias Landgraf

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ml10006@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5142-1997

Funding

Biotechnology and Biological Sciences Research Council (BB/I01179X/1)

  • Matthias Landgraf

Biotechnology and Biological Sciences Research Council (BB/M002934/1)

  • Matthias Landgraf

Biotechnology and Biological Sciences Research Council (BB/I012273/1)

  • Sean T Sweeney

Biotechnology and Biological Sciences Research Council (BB/M002322/1)

  • Sean T Sweeney

Biotechnology and Biological Sciences Research Council (BB/N/014561/1)

  • Richard A Baines

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Graeme W Davis, University of California, San Francisco, United States

Publication history

  1. Received: June 20, 2018
  2. Accepted: December 12, 2018
  3. Accepted Manuscript published: December 12, 2018 (version 1)
  4. Accepted Manuscript updated: December 17, 2018 (version 2)
  5. Version of Record published: December 27, 2018 (version 3)

Copyright

© 2018, Oswald et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,572
    Page views
  • 776
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew C W Oswald
  2. Paul S Brooks
  3. Maarten F Zwart
  4. Amrita Mukherjee
  5. Ryan J H West
  6. Carlo N G Giachello
  7. Khomgrit Morarach
  8. Richard A Baines
  9. Sean T Sweeney
  10. Matthias Landgraf
(2018)
Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila
eLife 7:e39393.
https://doi.org/10.7554/eLife.39393

Further reading

    1. Neuroscience
    Orie T Shafer et al.
    Research Article

    The circadian clock orchestrates daily changes in physiology and behavior to ensure internal temporal order and optimal timing across the day. In animals, a central brain clock coordinates circadian rhythms throughout the body and is characterized by a remarkable robustness that depends on synaptic connections between constituent neurons. The clock neuron network of Drosophila, which shares network motifs with clock networks in the mammalian brain yet is built of many fewer neurons, offers a powerful model for understanding the network properties of circadian timekeeping. Here we report an assessment of synaptic connectivity within a clock network, focusing on the critical lateral neuron (LN) clock neuron classes within the Janelia hemibrain dataset. Our results reveal that previously identified anatomical and functional subclasses of LNs represent distinct connectomic types. Moreover, we identify a small number of non-clock cell subtypes representing highly synaptically coupled nodes within the clock neuron network. This suggests that neurons lacking molecular timekeeping likely play integral roles within the circadian timekeeping network. To our knowledge, this represents the first comprehensive connectomic analysis of a circadian neuronal network.

    1. Developmental Biology
    2. Neuroscience
    Mariah L Hoye et al.
    Research Article

    Mutations in the RNA helicase, DDX3X, are a leading cause of Intellectual Disability and present as DDX3X syndrome, a neurodevelopmental disorder associated with cortical malformations and autism. Yet, the cellular and molecular mechanisms by which DDX3X controls cortical development are largely unknown. Here, using a mouse model of Ddx3x loss-of-function we demonstrate that DDX3X directs translational and cell cycle control of neural progenitors, which underlies precise corticogenesis. First, we show brain development is sensitive to Ddx3x dosage; complete Ddx3x loss from neural progenitors causes microcephaly in females, whereas hemizygous males and heterozygous females show reduced neurogenesis without marked microcephaly. In addition, Ddx3x loss is sexually dimorphic, as its paralog, Ddx3y, compensates for Ddx3x in the developing male neocortex. Using live imaging of progenitors, we show that DDX3X promotes neuronal generation by regulating both cell cycle duration and neurogenic divisions. Finally, we use ribosome profiling in vivo to discover the repertoire of translated transcripts in neural progenitors, including those which are DDX3X-dependent and essential for neurogenesis. Our study reveals invaluable new insights into the etiology of DDX3X syndrome, implicating dysregulated progenitor cell cycle dynamics and translation as pathogenic mechanisms.