Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila

  1. Matthew C W Oswald  Is a corresponding author
  2. Paul S Brooks
  3. Maarten F Zwart
  4. Amrita Mukherjee
  5. Ryan J H West
  6. Carlo N G Giachello
  7. Khomgrit Morarach
  8. Richard A Baines
  9. Sean T Sweeney
  10. Matthias Landgraf  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. University of Manchester, United Kingdom
  4. University of York, United Kingdom

Abstract

Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson's disease-linked protein DJ-1ß as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew C W Oswald

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mo364@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8586-9351
  2. Paul S Brooks

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maarten F Zwart

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amrita Mukherjee

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ryan J H West

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9873-2258
  6. Carlo N G Giachello

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Khomgrit Morarach

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard A Baines

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8571-4376
  9. Sean T Sweeney

    Department of Biology, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthias Landgraf

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ml10006@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5142-1997

Funding

Biotechnology and Biological Sciences Research Council (BB/I01179X/1)

  • Matthias Landgraf

Biotechnology and Biological Sciences Research Council (BB/M002934/1)

  • Matthias Landgraf

Biotechnology and Biological Sciences Research Council (BB/I012273/1)

  • Sean T Sweeney

Biotechnology and Biological Sciences Research Council (BB/M002322/1)

  • Sean T Sweeney

Biotechnology and Biological Sciences Research Council (BB/N/014561/1)

  • Richard A Baines

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Oswald et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,117
    views
  • 965
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew C W Oswald
  2. Paul S Brooks
  3. Maarten F Zwart
  4. Amrita Mukherjee
  5. Ryan J H West
  6. Carlo N G Giachello
  7. Khomgrit Morarach
  8. Richard A Baines
  9. Sean T Sweeney
  10. Matthias Landgraf
(2018)
Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila
eLife 7:e39393.
https://doi.org/10.7554/eLife.39393

Share this article

https://doi.org/10.7554/eLife.39393

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Neuroscience
    Iustin V Tabarean
    Research Article

    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4–5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.