Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila
Abstract
Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson's disease-linked protein DJ-1ß as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council (BB/I01179X/1)
- Matthias Landgraf
Biotechnology and Biological Sciences Research Council (BB/M002934/1)
- Matthias Landgraf
Biotechnology and Biological Sciences Research Council (BB/I012273/1)
- Sean T Sweeney
Biotechnology and Biological Sciences Research Council (BB/M002322/1)
- Sean T Sweeney
Biotechnology and Biological Sciences Research Council (BB/N/014561/1)
- Richard A Baines
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Graeme W Davis, University of California, San Francisco, United States
Publication history
- Received: June 20, 2018
- Accepted: December 12, 2018
- Accepted Manuscript published: December 12, 2018 (version 1)
- Accepted Manuscript updated: December 17, 2018 (version 2)
- Version of Record published: December 27, 2018 (version 3)
Copyright
© 2018, Oswald et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,572
- Page views
-
- 776
- Downloads
-
- 31
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
- Stem Cells and Regenerative Medicine
Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche.
-
- Neuroscience
- Stem Cells and Regenerative Medicine
Fusing brain organoids with blood vessel organoids leads to the incorporation of non-neural endothelial cells and microglia into the brain organoids.