Expanded genetic screening in C. elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration

Abstract

The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kyung Won Kim

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    kwkim@hallym.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  2. Ngang Heok Tang

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher A Piggott

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew G Andrusiak

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Seungmee Park

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ming Zhu

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Naina Kurup

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Salvatore J Cherra III

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Zilu Wu

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew D Chisholm

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    adchisholm@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Yishi Jin

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    yijin@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9371-9860

Funding

American Heart Association (13POST14800057)

  • Kyung Won Kim

Canadian Institutes of Health Research (MFE-146808)

  • Matthew G Andrusiak

National Institutes of Health (NS057317)

  • Yishi Jin

National Institutes of Health (NS093588)

  • Yishi Jin

Hallym University Research Fund (HRF-201809-014)

  • Kyung Won Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Stanford University, United States

Version history

  1. Received: July 2, 2018
  2. Accepted: November 19, 2018
  3. Accepted Manuscript published: November 21, 2018 (version 1)
  4. Version of Record published: December 5, 2018 (version 2)

Copyright

© 2018, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,048
    Page views
  • 509
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyung Won Kim
  2. Ngang Heok Tang
  3. Christopher A Piggott
  4. Matthew G Andrusiak
  5. Seungmee Park
  6. Ming Zhu
  7. Naina Kurup
  8. Salvatore J Cherra III
  9. Zilu Wu
  10. Andrew D Chisholm
  11. Yishi Jin
(2018)
Expanded genetic screening in C. elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration
eLife 7:e39756.
https://doi.org/10.7554/eLife.39756

Share this article

https://doi.org/10.7554/eLife.39756

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.