Age-dependent dormant resident progenitors are stimulated by injury to regenerate Purkinje neurons

  1. N Sumru Bayin
  2. Alexandre Wojcinski
  3. Aurelien Mourton
  4. Hiromitsu Saito
  5. Noboru Suzuki
  6. Alexandra L Joyner  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. Mie University, Japan

Abstract

Outside of the neurogenic niches of the brain, postmitotic neurons have not been found to undergo efficient regeneration. We demonstrate that mouse Purkinje cells (PCs), which are born at midgestation and are crucial for development and function of cerebellar circuits, are rapidly and fully regenerated following their ablation at birth. New PCs are produced from immature FOXP2+ neural precursors (iPCs) that are able to enter the cell cycle and support normal cerebellum development. The number of iPCs and their regenerative capacity, however, diminish soon after birth and consequently PCs are poorly replenished when ablated at postnatal day five. Nevertheless, the PC-depleted cerebella reach a normal size by increasing cell size, but scaling of neuron types is disrupted and cerebellar function is impaired. Our findings provide a new paradigm in the field of neuron regeneration by identifying a population of immature neurons that buffers against perinatal brain injury in a stage-dependent process.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. N Sumru Bayin

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandre Wojcinski

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aurelien Mourton

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hiromitsu Saito

    Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University, Tsu, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Noboru Suzuki

    Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University, Tsu, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra L Joyner

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    joynera@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7090-9605

Funding

National Institute of Neurological Disorders and Stroke (R01NS092096)

  • Alexandra L Joyner

National Cancer Institute (P30 CA008748-48)

  • Alexandra L Joyner

National Institute of Mental Health (R37MH085726)

  • Alexandra L Joyner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mary E Hatten, The Rockefeller University, United States

Ethics

Animal experimentation: All the experiments were performed according to protocols (#07-01-001) approved by the Memorial Sloan Kettering Cancer Center's Institutional Animal Care and Use Committee (IACUC) . Animals were given access to food and water ad libitum and were housed on a 12-hour light/dark cycle.

Version history

  1. Received: February 6, 2018
  2. Accepted: July 30, 2018
  3. Accepted Manuscript published: August 9, 2018 (version 1)
  4. Version of Record published: August 29, 2018 (version 2)

Copyright

© 2018, Bayin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,153
    views
  • 356
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. N Sumru Bayin
  2. Alexandre Wojcinski
  3. Aurelien Mourton
  4. Hiromitsu Saito
  5. Noboru Suzuki
  6. Alexandra L Joyner
(2018)
Age-dependent dormant resident progenitors are stimulated by injury to regenerate Purkinje neurons
eLife 7:e39879.
https://doi.org/10.7554/eLife.39879

Share this article

https://doi.org/10.7554/eLife.39879

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.