TAPBPR mediates peptide dissociation from MHC class I using a leucine lever

  1. Florin Tudor Ilca
  2. Andreas Neerincx
  3. Clemens Hermann
  4. Ana Marcu
  5. Stefan Stefvanovic
  6. Janet E Deane
  7. Louise H Boyle  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Cape Town, South Africa
  3. University of Tübingen, Germany

Abstract

Tapasin and TAPBPR are known to perform peptide editing on major histocompatibility complex class I (MHC I) molecules, however, the precise molecular mechanism(s) involved in this process remain largely enigmatic. Here, using immunopeptidomics in combination with novel cell-based assays that assess TAPBPR-mediate peptide exchange, we reveal a critical role for the K22-D35 loop of TAPBPR in mediating peptide exchange on MHC I. We identify a specific leucine within this loop that enables TAPBPR to facilitate peptide dissociation from MHC I. Moreover, we delineate the molecular features of the MHC I F pocket required for TAPBPR to promote peptide dissociation in a loop-dependent manner. These data reveal that chaperone-mediated peptide editing of MHC I can occur by different mechanisms dependent on the C-terminal residue that the MHC I accommodates in its F pocket and provide novel insights that may inform the therapeutic potential of TAPBPR manipulation to increase tumour immunogenicity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files regarding the lists of peptides presented on MHC class I have been provided for Figures 5

The following data sets were generated

Article and author information

Author details

  1. Florin Tudor Ilca

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Florin Tudor Ilca, Some aspects of the work included in this manuscript form part of a recent patent application. Applicant: Cambridge Enterprise Limited. Application number: 1801323.5, Status: Pending.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6582-8007
  2. Andreas Neerincx

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Andreas Neerincx, Some aspects of the work included in this manuscript form part of a recent patent application. Applicant: Cambridge Enterprise Limited. Application number: 1801323.5, Status: Pending.
  3. Clemens Hermann

    Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
    Competing interests
    No competing interests declared.
  4. Ana Marcu

    Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0808-8097
  5. Stefan Stefvanovic

    Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  6. Janet E Deane

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4863-0330
  7. Louise H Boyle

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    lhb22@cam.ac.uk
    Competing interests
    Louise H Boyle, Some aspects of the work included in this manuscript form part of a recent patent application. Applicant: Cambridge Enterprise Limited. Application number: 1801323.5, Status: Pending.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3105-6555

Funding

Wellcome (104647/Z/14/Z)

  • Andreas Neerincx
  • Louise H Boyle

South African Medical Research Council

  • Clemens Hermann

Royal Society (UF100371)

  • Janet E Deane

Bosch-Forschungsstiftung

  • Ana Marcu
  • Stefan Stefvanovic

Wellcome (109076/Z/15/A)

  • Florin Tudor Ilca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ilca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,429
    views
  • 339
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florin Tudor Ilca
  2. Andreas Neerincx
  3. Clemens Hermann
  4. Ana Marcu
  5. Stefan Stefvanovic
  6. Janet E Deane
  7. Louise H Boyle
(2018)
TAPBPR mediates peptide dissociation from MHC class I using a leucine lever
eLife 7:e40126.
https://doi.org/10.7554/eLife.40126

Share this article

https://doi.org/10.7554/eLife.40126

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.

    1. Immunology and Inflammation
    Mohsen Khosravi-Maharlooei, Andrea Vecchione ... Megan Sykes
    Research Article

    Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants, and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdcscid Il2rgtm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1+CD4+ peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies, and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.