Structured illumination microscopy combined with machine learning for the high throughput analysis of virus structure

Abstract

Optical super-resolution microscopy techniques enable high molecular specificity with high spatial resolution and constitute a set of powerful tools in the investigation of the structure of supramolecular assemblies such as viruses. Here, we report on a new methodology which combines Structured Illumination Microscopy (SIM) with machine learning algorithms to image and classify the structure of large populations of biopharmaceutical viruses with high resolution. The method offers information on virus morphology that can ultimately be linked with functional performance. We demonstrate the approach on viruses produced for oncolytic viriotherapy (Newcastle Disease Virus) and vaccine development (Influenza). This unique tool enables the rapid assessment of the quality of viral production with high throughput obviating the need for traditional batch testing methods which are complex and time consuming. We show that our method also works on non-purified samples from pooled harvest fluids directly from the production line.

Data availability

Analysis code for image segmentation, machine learning training, classification and structural analysis is available via GitHub (https://github.com/Romain-Laine/MiLeSIM). Source data files have been provided for Figures 4 and 5.

Article and author information

Author details

  1. Romain F Laine

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    r.laine@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2151-4487
  2. Gemma Goodfellow

    Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurence J Young

    Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jon Travers

    Virology, Medimmune, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Danielle Carroll

    Virology, Medimmune, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Oliver Dibben

    Flu-BPD, Medimmune, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Helen Bright

    Virology, Medimmune, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Clemens Kaminski

    Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    cfk23@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Engineering and Physical Sciences Research Council (EP/L015889/1)

  • Romain F Laine
  • Gemma Goodfellow
  • Laurence J Young
  • Clemens Kaminski

Medical Research Council (MR/K015850/1)

  • Romain F Laine
  • Gemma Goodfellow
  • Laurence J Young
  • Clemens Kaminski

Medical Research Council (MR/K02292X/1)

  • Romain F Laine
  • Gemma Goodfellow
  • Laurence J Young
  • Clemens Kaminski

Wellcome (3-3249/Z/16/Z)

  • Romain F Laine
  • Gemma Goodfellow
  • Laurence J Young
  • Clemens Kaminski

Engineering and Physical Sciences Research Council (EP/H018301/1)

  • Romain F Laine
  • Gemma Goodfellow
  • Laurence J Young
  • Clemens Kaminski

Biotechnology and Biological Sciences Research Council (BB/P027431/1)

  • Romain F Laine

MedImmune (NA)

  • Romain F Laine
  • Gemma Goodfellow
  • Jon Travers
  • Danielle Carroll
  • Oliver Dibben
  • Helen Bright

Infinitus (NA)

  • Clemens Kaminski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antoine M van Oijen, University of Wollongong, Australia

Version history

  1. Received: July 17, 2018
  2. Accepted: December 10, 2018
  3. Accepted Manuscript published: December 13, 2018 (version 1)
  4. Version of Record published: January 14, 2019 (version 2)

Copyright

© 2018, Laine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,851
    views
  • 432
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romain F Laine
  2. Gemma Goodfellow
  3. Laurence J Young
  4. Jon Travers
  5. Danielle Carroll
  6. Oliver Dibben
  7. Helen Bright
  8. Clemens Kaminski
(2018)
Structured illumination microscopy combined with machine learning for the high throughput analysis of virus structure
eLife 7:e40183.
https://doi.org/10.7554/eLife.40183

Share this article

https://doi.org/10.7554/eLife.40183

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.