Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network

  1. Ilaria Sani  Is a corresponding author
  2. Brent C McPherson
  3. Heiko Stemmann
  4. Franco Pestilli
  5. Winrich A Freiwald  Is a corresponding author
  1. The Rockefeller University, United States
  2. Indiana University, United States
  3. University of Bremen, Germany

Abstract

Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data for Figures 2, 3, 4, 5, have been made available via the Open Science Framework (https://osf.io/8ks5t/).

The following data sets were generated

Article and author information

Author details

  1. Ilaria Sani

    Laboratory of Neural Systems, The Rockefeller University, New York, United States
    For correspondence
    isani01@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4389-7263
  2. Brent C McPherson

    Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, Indiana University Network Science Institute, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heiko Stemmann

    Institute for Brain Research and Center for Advanced Imaging, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Franco Pestilli

    Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, Indiana University Network Science Institute, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2469-0494
  5. Winrich A Freiwald

    Laboratory of Neural Systems, The Rockefeller University, New York, United States
    For correspondence
    wfreiwald@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8456-5030

Funding

Leon Levy Foundation (https://leonlevyfoundation.org/leon-levy-fellowship-neuroscience)

  • Ilaria Sani

National Science Foundation (BCS-1734853)

  • Franco Pestilli

New York Stem Cell Foundation (https://nyscf.org)

  • Winrich A Freiwald

National Science Foundation (BCS-1057006)

  • Winrich A Freiwald

National Institutes of Health (NIMH ULTTR001108)

  • Franco Pestilli

Indiana Clinical and Translational Sciences Institute (Passthrough)

  • Franco Pestilli

Microsoft Research (Azure Credits Award)

  • Franco Pestilli

Indiana University (Areas of Emergent Research initiative Learning: Brains-Machines-Children)

  • Franco Pestilli

National Institutes of Health (1U54MH091657)

  • Franco Pestilli

National Science Foundation (IIS-1636893)

  • Franco Pestilli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Our Protocols protocol has been approved by The Rockefeller University, Institutional Animal Care and Use Committee. In vivo imaging procedures were performed at the Center for Advanced Imaging of Bremen University. They conformed to the National Institutes of Health Guide for Use and Care of Laboratory Animals, regulations for the welfare of experimental animals issued by the federal government of Germany,and stipulations of local Bremen authorities

Copyright

© 2019, Sani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,370
    views
  • 506
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilaria Sani
  2. Brent C McPherson
  3. Heiko Stemmann
  4. Franco Pestilli
  5. Winrich A Freiwald
(2019)
Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network
eLife 8:e40520.
https://doi.org/10.7554/eLife.40520

Share this article

https://doi.org/10.7554/eLife.40520

Further reading

    1. Neuroscience
    Christian Thome, Jan Maximilian Janssen ... Maren Engelhardt
    Tools and Resources

    The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.