Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network

  1. Ilaria Sani  Is a corresponding author
  2. Brent C McPherson
  3. Heiko Stemmann
  4. Franco Pestilli
  5. Winrich A Freiwald  Is a corresponding author
  1. The Rockefeller University, United States
  2. Indiana University, United States
  3. University of Bremen, Germany

Abstract

Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data for Figures 2, 3, 4, 5, have been made available via the Open Science Framework (https://osf.io/8ks5t/).

The following data sets were generated

Article and author information

Author details

  1. Ilaria Sani

    Laboratory of Neural Systems, The Rockefeller University, New York, United States
    For correspondence
    isani01@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4389-7263
  2. Brent C McPherson

    Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, Indiana University Network Science Institute, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heiko Stemmann

    Institute for Brain Research and Center for Advanced Imaging, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Franco Pestilli

    Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, Indiana University Network Science Institute, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2469-0494
  5. Winrich A Freiwald

    Laboratory of Neural Systems, The Rockefeller University, New York, United States
    For correspondence
    wfreiwald@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8456-5030

Funding

Leon Levy Foundation (https://leonlevyfoundation.org/leon-levy-fellowship-neuroscience)

  • Ilaria Sani

National Science Foundation (BCS-1734853)

  • Franco Pestilli

New York Stem Cell Foundation (https://nyscf.org)

  • Winrich A Freiwald

National Science Foundation (BCS-1057006)

  • Winrich A Freiwald

National Institutes of Health (NIMH ULTTR001108)

  • Franco Pestilli

Indiana Clinical and Translational Sciences Institute (Passthrough)

  • Franco Pestilli

Microsoft Research (Azure Credits Award)

  • Franco Pestilli

Indiana University (Areas of Emergent Research initiative Learning: Brains-Machines-Children)

  • Franco Pestilli

National Institutes of Health (1U54MH091657)

  • Franco Pestilli

National Science Foundation (IIS-1636893)

  • Franco Pestilli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Our Protocols protocol has been approved by The Rockefeller University, Institutional Animal Care and Use Committee. In vivo imaging procedures were performed at the Center for Advanced Imaging of Bremen University. They conformed to the National Institutes of Health Guide for Use and Care of Laboratory Animals, regulations for the welfare of experimental animals issued by the federal government of Germany,and stipulations of local Bremen authorities

Copyright

© 2019, Sani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,361
    views
  • 506
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilaria Sani
  2. Brent C McPherson
  3. Heiko Stemmann
  4. Franco Pestilli
  5. Winrich A Freiwald
(2019)
Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network
eLife 8:e40520.
https://doi.org/10.7554/eLife.40520

Share this article

https://doi.org/10.7554/eLife.40520

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.