Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network
Abstract
Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data for Figures 2, 3, 4, 5, have been made available via the Open Science Framework (https://osf.io/8ks5t/).
-
Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network - DataOpen Science Framework, 10.17605/OSF.IO/8KS5T.
Article and author information
Author details
Funding
Leon Levy Foundation (https://leonlevyfoundation.org/leon-levy-fellowship-neuroscience)
- Ilaria Sani
National Science Foundation (BCS-1734853)
- Franco Pestilli
New York Stem Cell Foundation (https://nyscf.org)
- Winrich A Freiwald
National Science Foundation (BCS-1057006)
- Winrich A Freiwald
National Institutes of Health (NIMH ULTTR001108)
- Franco Pestilli
Indiana Clinical and Translational Sciences Institute (Passthrough)
- Franco Pestilli
Microsoft Research (Azure Credits Award)
- Franco Pestilli
Indiana University (Areas of Emergent Research initiative Learning: Brains-Machines-Children)
- Franco Pestilli
National Institutes of Health (1U54MH091657)
- Franco Pestilli
National Science Foundation (IIS-1636893)
- Franco Pestilli
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Our Protocols protocol has been approved by The Rockefeller University, Institutional Animal Care and Use Committee. In vivo imaging procedures were performed at the Center for Advanced Imaging of Bremen University. They conformed to the National Institutes of Health Guide for Use and Care of Laboratory Animals, regulations for the welfare of experimental animals issued by the federal government of Germany,and stipulations of local Bremen authorities
Copyright
© 2019, Sani et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 505
- downloads
-
- 46
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network’s output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.
-
- Neuroscience
In this paper, we provide an overview and analysis of the BRAIN Initiative data-sharing ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data archives germane to data sharing and reuse, namely data submission and access procedures and aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, focusing on issues largely specific to sharing human data and drawing on N = 34 interviews with diverse stakeholders. The BRAIN Initiative-funded archive ecosystem faces interoperability and data stewardship challenges, such as achieving and maintaining interoperability of data and archives and harmonizing research participants’ informed consents for tiers of access for human data across multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more specialized archives to adapt to the needs of particular research communities. Finally, the multiple archives offer ample raw material for network evolution in response to the needs of neuroscientists over time. Our first objective in this paper is to provide a guide to the BRAIN Initiative data-sharing ecosystem for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the development of empirically informed policy and practice aimed at making neuroscience data more findable, accessible, interoperable, and reusable.