Decreased brain connectivity in smoking contrasts with increased connectivity in drinking

  1. Wei Cheng  Is a corresponding author
  2. Edmund T Rolls  Is a corresponding author
  3. Trevor W Robbins
  4. Weikang Gong
  5. Zhaowen Liu
  6. Wujun Lv
  7. Jingnan Du
  8. Hongkai Wen
  9. Liang Ma
  10. Erin Burke Quinlan
  11. Hugh Garavan
  12. Eric Artiges
  13. Dimitri Papadopoulos Orfanos
  14. Michael N Smolka
  15. Gunter Schumann
  16. Keith Kendrick
  17. Jianfeng Feng  Is a corresponding author
  1. Fudan University, China
  2. University of Cambridge, United Kingdom
  3. Xidian University, China
  4. Shanghai University Finance and Economics, China
  5. University of Warwick, United Kingdom
  6. Beijing Institute of Genomics, Chinese Academy of Sciences, China
  7. King's College London, United Kingdom
  8. University of Vermont, United States
  9. University Paris Descartes, France
  10. Université Paris-Saclay, France
  11. Technische Universität Dresden, Germany
  12. University of Electronic Science and Technology of China, China

Abstract

In a group of 831 participants from the general population in the Human Connectome Project, smokers exhibited low overall functional connectivity, and more specifically of the lateral orbitofrontal cortex which is associated with non-reward mechanisms, the adjacent inferior frontal gyrus, and the precuneus. Participants who drank a high amount had overall increases in resting state functional connectivity, and specific increases in reward-related systems including the medial orbitofrontal cortex and the cingulate cortex. Increased impulsivity was found in smokers, associated with decreased functional connectivity of the non-reward-related lateral orbitofrontal cortex; and increased impulsivity was found in high amount drinkers, associated with increased functional connectivity of the reward-related medial orbitofrontal cortex. The main findings were cross-validated in an independent longitudinal dataset with 1176 participants, IMAGEN. Further, the functional connectivities in 14-year-old non-smokers (and also in female low-drinkers) were related to who would smoke or drink at age 19. An implication is that these differences in brain functional connectivities play a role in smoking and drinking, together with other factors.

Data availability

The dataset used in this study and custom code is available at Dryad.

The following data sets were generated

Article and author information

Author details

  1. Wei Cheng

    Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
    For correspondence
    chengwei06170323@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Edmund T Rolls

    Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
    For correspondence
    edmund.rolls@oxcns.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3025-1292
  3. Trevor W Robbins

    Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Weikang Gong

    Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhaowen Liu

    School of Computer Science and Technology, Xidian University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wujun Lv

    School of Mathematics, Shanghai University Finance and Economics, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jingnan Du

    Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Hongkai Wen

    Department of Computer Science, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Liang Ma

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Erin Burke Quinlan

    Centre for Population Neuroscience and Stratified Medicine (PONS), King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Hugh Garavan

    Department of Psychiatry, University of Vermont, Vermont, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Eric Artiges

    Institut National de la Santé et de la Recherche Médicale, University Paris Descartes, Orsay, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Dimitri Papadopoulos Orfanos

    NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1242-8990
  14. Michael N Smolka

    Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Gunter Schumann

    Centre for Population Neuroscience and Stratified Medicine (PONS), King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Keith Kendrick

    Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0371-5904
  17. Jianfeng Feng

    Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
    For correspondence
    jianfeng64@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5987-2258

Funding

National Natural Science Foundation of China (71661167002)

  • Jianfeng Feng

The Key Project of Shanghai Science & Technology Innovation Plan (16JC1420402)

  • Jianfeng Feng

National Natural Science Foundation of China (81701773)

  • Wei Cheng

Shanghai Sailing Program (17YF1426200)

  • Wei Cheng

Natural Science Foundation of Shanghai (18ZR1404400)

  • Wei Cheng

The Key Project of Shanghai Science & Technology Innovation Plan (15JC1400101)

  • Jianfeng Feng

The Shanghai AI Platform for Diagnosis and Treatment of Brain Diseases (2016-17)

  • Jianfeng Feng

Base for Introducing Talents of Discipline to Universities (B18015)

  • Jianfeng Feng

National Natural Science Foundation of China (91630314)

  • Jianfeng Feng

National Natural Science Foundation of China (11771010)

  • Wei Cheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Ethics

Human subjects: The WU-Minn HCP Consortium obtained full informed consent from all participants, and research procedures and ethical guidelines were followed in accordance with the Washington University Institutional Review Boards (IRB #201204036; Title: 'Mapping the Human Connectome: Structure, Function, and Heritability').

Version history

  1. Received: August 4, 2018
  2. Accepted: December 20, 2018
  3. Accepted Manuscript published: January 8, 2019 (version 1)
  4. Version of Record published: January 17, 2019 (version 2)

Copyright

© 2019, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,422
    views
  • 633
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Cheng
  2. Edmund T Rolls
  3. Trevor W Robbins
  4. Weikang Gong
  5. Zhaowen Liu
  6. Wujun Lv
  7. Jingnan Du
  8. Hongkai Wen
  9. Liang Ma
  10. Erin Burke Quinlan
  11. Hugh Garavan
  12. Eric Artiges
  13. Dimitri Papadopoulos Orfanos
  14. Michael N Smolka
  15. Gunter Schumann
  16. Keith Kendrick
  17. Jianfeng Feng
(2019)
Decreased brain connectivity in smoking contrasts with increased connectivity in drinking
eLife 8:e40765.
https://doi.org/10.7554/eLife.40765

Share this article

https://doi.org/10.7554/eLife.40765

Further reading

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article

    Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.