Pervasive transcription fine-tunes replication origin activity

  1. Tito Candelli
  2. Julien Gros  Is a corresponding author
  3. Domenico Libri  Is a corresponding author
  1. Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, France
8 figures, 2 tables and 2 additional files

Figures

Figure 1 with 2 supplements
Metasite analysis of RNAPII occupancy and transcription termination at replication origins.

(A) RNAPII PAR-CLIP metaprofile at replication origins. 228 confirmed ARSs were oriented according to the direction of the T-rich strand of their proposed ACSs (blue arrow) (Nieduszynski et al., 2006) and aligned at the 5' ends of the oriented ACSs (red dashed line). The median number of RNAPII reads (Schaughency et al., 2014) calculated for each position is plotted. Transcription proceeding along the T-rich strand of the ACS is represented in blue and considered to be sense, while transcription on the opposite strand is plotted in red and considered to be antisense. (B). Distribution of poly(A)+RNA 3'-ends at genomic regions surrounding replication origins. Origins were oriented and anchored as in A). 3'-ends reads (Roy et al., 2016) of RNAs extracted from wild-type cells (WT, blue) or cells in which both Rrp6 and Dis3 were depleted from the nucleus (RRP6-DIS3-AA, transparent red) were plotted. At each position around the anchor, the presence or absence of an RNA 3'-end was scored independently of the read count. (C). Scheme of replication origins anchored at different ACS sequences. Left: sense polymerases transcribing upstream of primary ACSs (blue arrows) are colored in blue, while antisense polymerases transcribing upstream of secondary ACSs (orange arrows) are colored in red. Right: ARSs oriented according to antisense transcription were aligned at the 5' ends of the primary ACSs (top, corresponds to red trace in D) or at the 5' ends of the secondary ACSs (bottom, corresponds to black trace in D). (D). RNAPII PAR-CLIP metaprofile of antisense transcription aligned either to the 5’ ends of the primary (red) or the secondary (black) ACSs, as shown in (C). As in (A), the median number of RNAPII reads calculated for each position is plotted. (E). Distributions of RNA 3’-ends and RNAPII at genomic regions aligned at secondary ACSs. Origins were oriented and aligned as in (D). At each position around the anchor, presence or absence of an RNA 3'-end was scored independently of the read count (left y-axis). The distribution of RNAPII already shown in (C) is reported here for comparison (right y-axis).

https://doi.org/10.7554/eLife.40802.002
Figure 1—figure supplement 1
Measures on mapped secondary ACSs.

(A) Average distribution of the distances between the main and the putative secondary ACS defined based on conformity to the consensus sequence defined in Coster and Diffley (2017) for every ARS. (B) Distribution of the average scores of main (blue) and putative secondary ACSs (red).

https://doi.org/10.7554/eLife.40802.003
Figure 1—figure supplement 2
Statistical analysis of pausing and termination signals.

(A) Regions around the ACS used for the Box Plots represented in (B) and (C). (B) Distributions of RNAPII occupancy signal before and after the primary ACSs, as indicated. The 100 origins that had the highest levels of surrounding transcription were used for this analysis. (C) Same as in (B), but regions were aligned at the predicted secondary ACSs. (D) Statistical significance of the transcription termination peak at aligned primary ACSs. p-Values associated to the detection of the observed number of termination events were calculated under the H0 hypothesis that the frequency of termination events is equal in the whole alignment region (‘background termination’). The expected frequency of termination was estimated based on the frequency observed in a window of 100nt located 500nt upstream of the ACS. The negative Log of the corrected p-value is plotted on the y-axis. The red line represents the significance level (p=0.05). (E) Same as in (D), but origins were aligned at the 5' ends of the predicted secondary ACSs. Note that in this case the significant termination peak is located downstream of the ACS and not immediately upstream, as in (D).

https://doi.org/10.7554/eLife.40802.004
RNAPII occupancy at individual ARS detected by CRAC analysis.

RNAPII occupancy at sites of roadblock detected upstream ARS305 (A), ARS413 (B), ARS431 (C) and ARS432.5 (or ARS453, (D) by CRAC (Candelli et al., 2018). The pervasive transcriptional landscape at these ARSs is observed in wild-type cells (WT, blue) or cells bearing a mutant allele for an essential component of the CPF-CF transcription termination pathway (rna15-2, green) at permissive (25°C, dark colors) or non-permissive temperature (37°C, light colors). In the case of ARS305 (A), RNAPII occupancy is also shown in cells rapidly depleted for an essential component of the NNS transcription termination pathway through the use of an auxin-inducible degron tag (Nrd1-AID; (−) Auxin: no depletion, dark pink; (+) Auxin: depletion, light pink).

https://doi.org/10.7554/eLife.40802.005
Figure 3 with 1 supplement
Analysis of transcription termination at ARS305.

(A) Scheme of the reporter system (Porrua et al., 2012) used to assess termination at ARS305. PTETOFF: doxycycline-repressible promoter; PGAL: GAL1 promoter. Termination of transcription at a candidate sequence (blue) allows growth on copper containing plates while readthrough transcription inhibits the GAL1 promoter and leads to copper sensitivity, as indicated. (B) Growth assay of yeasts bearing reporters containing a Reb1-dependent terminator, (Colin et al., 2014, used as a positive control), or ARS305 (lanes 1 and 3, respectively). Variants containing mutations in the Reb1 binding site (Reb1 BS ‘−') or the ACS sequence are spotted for comparison (lanes 2 and 4, respectively). (C) Northern blot analysis of PTET transcripts produced in wild-type and rrp6∆ cells from reporters containing either a Reb1-binding site (Reb1 BS, lanes 1–2) or wild-type or mutant ARS305 sequences, as indicated (lanes 3–8). Transcripts terminated within ARS305 or at the CUP1 terminator are highlighted.

https://doi.org/10.7554/eLife.40802.006
Figure 3—figure supplement 1
ARS305 sequence confers mitotic maintenance to a centromeric plasmid when transcription is shut down.

To assess the functionality of ARS305 in the reporter construct used for detecting transcription termination, we deleted the origin of the plasmid and transformed yeast in the presence or absence of doxycycline to control expression of the TET promoter. Transformants were only recovered in the absence of transcription, indicating that ARS305 is active but inactivated, as expected, when strong transcription runs through it. Candelli et al., Table 1.

https://doi.org/10.7554/eLife.40802.007
Role of ORC in the roadblock of RNAPII at origins.

(A) Distribution of RNA 3'-ends at genomic regions aligned at ACS sequences recognized by ORC (ORC-ACS) as defined by Eaton et al. (2010) (i.e. defined based on the best match to the consensus associated to each ORC-ChIP peak). Each origin was oriented according to the direction of the T-rich strand of its ORC-ACS and regions were aligned at the 5’ ends of the ORC-ACSs. As in 1B, RNA 3'-ends (Roy et al., 2016) were from transcripts expressed in wild-type cells (blue) or from cells depleted for exosome components (transparent red). At each position around the anchor, presence or absence of an RNA 3'-end was scored independently of the read count. Distributions of RNA 3’-ends both on the sense (top) and the antisense (bottom) strands relative to the ORC-ACSs are plotted. (B). Same as in (A) except that genomic regions were aligned at ACS sequences not recognized by ORC (nr-ACS) as defined by Eaton et al. (2010) (i.e. defined as ACS motifs for which no ORC ChIP signal could be detected). (C). Quantification of the roadblock at individual ARSs. For each ARS, the snapshot includes the upstream gene representing the incoming transcription. The distribution of RNA polymerase II (dark blue) detected by CRAC (Candelli et al., 2018) at ARS404 (left) and ARS1004 (right) oriented according to the direction of their T-rich ACS strands is shown. The positions of the qPCR amplicons used for the RT-qPCR analyses in (D) are indicated. (D). RT-qPCR analysis of transcriptional readthrough at ARS404 and ARS1004. Wild-type, orc2-1, orc5-1 and cdc6-1 cells were cultured at permissive temperature and maintained at permissive (23°C, blue) or non-permissive (37°C, red) temperature for 3 hr. The level of readthrough transcription at ARS404 (left) or ARS1004 ACS (right) was estimated by the ratio of RT-qPCR signals after and before the ACS, as indicated. Data were corrected by measuring the efficiency of qPCR for each couple of primers in each reaction. Values represent the average of at least three independent experiments. Error bars represent standard deviation.

https://doi.org/10.7554/eLife.40802.010
Local pervasive transcription impacts origin competence and efficiency.

Transcription levels were assessed in the first 100 nt of each ARS, starting at the 5’ end of the ACS, by adding RNAPII read counts (Schaughency et al., 2014) on both strands of the region. Origins were ranked based on transcription levels and the origins having the highest transcription levels (30/192, grey boxplots) were compared to the rest of the population (162/192, white boxplots). Origin metrics (licensing, 5A, and firing efficiency, 5B) for the two classes of origins were retrieved from Hawkins et al. (2013). Boxplots were generated with BoxPlotR (http://shiny.chemgrid.org/boxplotr/); center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles. Notches are 1.58*IQR/n1/2.

https://doi.org/10.7554/eLife.40802.011
Correlations between transcription and origin function.

(A) Origins were first selected based on the levels of pervasive transcription to which they are exposed, calculated by adding RNAPII reads (Schaughency et al., 2014) over the ‘A’ (sense direction) or the ‘C’ (antisense direction) regions. For the selected ARSs, levels of pervasive transcription were then calculated over the ‘B’ region by summing RNAPII reads over the ‘Ba’ (sense direction) and the ‘Bas’ (antisense direction) regions, as indicated in the scheme. (B) Correlation between transcription over the ARS and origin competence. (C) Correlation between transcription over the ARS and origin efficiency. (D) Identification of two classes of origins, one that fires with high probability when licensing has occurred (high PF|L, red dots) and the other that fires less efficiently once licensed (low PF|L, black dots). (E) Correlation between PF|L and transcription. The efficiency of firing at the post-licensing step correlates with the levels of pervasive transcription only for origins with low PF|L (black dots). Origins that fire very efficiently once licensing occurred (PF|L≈1) are generally not sensitive to pervasive transcription (red dots). (F) Origins with a low PF|L (black dots) have a firing time that correlates with pervasive transcription, while origins with high PF|L (red dots) fire early independently of pervasive transcription levels.

https://doi.org/10.7554/eLife.40802.012
Asymmetry of origin sensitivity to pervasive transcription.

(A) Top: pervasive transcriptional landscape detected by RNAPII CRAC (Candelli et al., 2018) at YLL026W (HSP104) and ARS1206 in wild-type cells, both on Watson (blue) and Crick (red) strands, at 25°C (dark colors) and 37°C (light colors). The 5' ends and the sequences of the proposed primary ACS and the predicted secondary ACS for ARS1206 are shown. Bottom: schemes of the reporters containing the HSP104 gene and ARS1206 placed under the control of a doxycycline-repressible promoter (PTETOFF). The position of the amplicon used for the qPCR in (B) is shown. pS and pAS differ for the orientation of ARS1206, with the primary (pS) or the secondary ACS (pAS) exposed to constitutive readthrough transcription from HSP104. The sequence and the organization of the relevant region are indicated on the right for each plasmid. The positions of the oligonucleotides used for RNaseH cleavage (black arrows) and of the probe used in (C) are also indicated. The sequences of the oligonucleotides is reported in Table 1, with the following correspondence: cleaving oligo ‘a’=DL163; Northern probe = DL164; cleaving oligo ‘b’ = DL473; cleaving oligo ‘c’ = DL3991; cleaving oligo ‘d’ = DL3994. (B). Quantification by RT-qPCR of the HSP104 mRNA levels expressed from pS or pAS in the presence or absence of 5 µg/mL doxycycline. The position of the qPCR amplicon is reported in (A). (C). Northern blot analysis of HSP104 transcripts extracted from wild-type cells and subjected to RNAse H treatment before electrophoresis using oligonucleotides ‘a-d’ (positions shown in A). All RNAs were cleaved with oligonucleotide ‘a’ to decrease the size of the fragments analyzed and detect small differences in size. Cleavage with oligonucleotide ‘b’ (oligo-dT) (lanes 3, 4) allowed erasing length heterogeneity due to poly(A) tails. Oligonucleotides ‘c’ and ‘d’ were added in reactions run in lanes 1 and 6, respectively, to detect possible longer products that might originate from significant levels of transcription readthrough from HSP104, if the inversion of ARS1206 were to alter the transcription termination efficiency. Products of RNAse H degradation were run on a denaturing agarose gel and analyzed by Northern blot using a radiolabeled HSP104 probe (position shown in A). (D). Stability of plasmids depending on ARS1206 for replication as a function of ARS orientation. pS or pAS was transformed in wild-type cells and single transformants were grown and maintained in logarythmic phase in YPD for several generations. To assess the loss of the transformed plasmid, cells were retrieved at the indicated number of generations and serial dilutions spotted on YPD (left) or minimal media lacking uracile (right) for 2 or 3 days, respectively, at 30°C. (E). Mutation of ORC2 affects more severely the stability of pAS compared to pS. Transformation of pS and pAS in wild-type (ORC2, ‘−‘) or mutant (orc2-1, ‘+') cells. Pictures were taken after 5 days of incubation at permissive temperature (23°C).

https://doi.org/10.7554/eLife.40802.013
Author response image 1
RNAPII ParCLIP reads (mean values) are profiled around origins aligned on the first nucleotide of the primary ACS.
https://doi.org/10.7554/eLife.40802.017

Tables

Table 1
Yeast strains, oligonucleotides and plasmids used in this work. 
https://doi.org/10.7554/eLife.40802.008
Yeast strainsNameGenotypeOrigin
 DLY671W303-1a trp1∆Libri laboratory (BMA64)
 DLY2923W303-1a ORC2 ORC5 CDC6Gift from the Pasero laboratory (PP2583)
 DLY2685As W303-1a, ORC2 ORC5 cdc6-1Gift from the Schwob laboratory (E589)
 DLY2687As W303-1a, orc2-1 ORC5 CDC6Gift from the Schwob laboratory (E1507)
 DLY2688As W303-1a, ORC2 orc5-1 CDC6Gift from the Schwob laboratory (E4649)
OligonucleotidesNameSequencePurpose
 DL3370CATCCACAATTACAACCTATACATATTCTAGCTGCCTTCATTGAAACGGCGACGCCCGACGCCGTAATAACAmplification of ARS305 from genomic DNA. Fw primer bearing 48 bp of homology with DL1702.
 DL3371gaatctttcttcgaaatcacctttgtatttagcacctgcggttaatgcggATATATCAGAAACATACATATGAmplification of ARS305 from genomic DNA. Rev primer bearing 50 bp of homology with DL1666.
 DL3446CATCCACAATTACAACCTATACATATTCTAGCTGCCTTCATTGAAACGATATATCAGAAA
CATACATATG
Insertion of ARS305 in reverse orientation
(compare with primer pair DL3370/DL3371). Rev primer bearing homology with DL1702.
 DL3447gaatctttcttcgaaatcacctttgtatttagcacctgcggttaatgcggGCG
ACGCCCGACGCCGTAATAAC
Insertion of ARS305 in reverse orientation (compare with primer pair DL3370/DL3371). Fwd primer bearing homology with DL1666.
 DL3581gaatctttcttcgaaatcacctttgtatttagcacctgcggttaatgcggGTTTCATGTACTGTCCGGTGTGATTInsertion of shortened ARS305, fwd (cf. DL3447). Primes 32 bp downstream B4 element, removing 291 bp of ARS305 “full-length “3’ end.
 DL3583CATCCACAATTACAACCTATACATATTCTAGCTGCCTTCATTGAAACGGAGTATTTGATCCTTTTTTTTATTGTGInsertion of shortened ARS305, rev (cf. DL3446). Primes 34 bp upstream ARS305 ACS, removing 83 bp of ARS305
“full-length “5’ end.
 DL3376TTATTCCTCGAGGACTTTGTAGTTCTTAAAGCInsertion of linker substitution Lin102 (B4-) in ARS305 by two stages overlapping PCRs.
Fw primer,
pair with DL3371.
 DL3377CTACAAAGTCCTCGAGGAATAATAAATCACACCGGACInsertion of linker substitution Lin102 (B4-) in ARS305 by two stages overlapping PCRs. Rev primer, pair with DL3370.
 DL3378GGGACCTCGAGGAATACATAACAAAACATATAAAAACCInsertion of linker substitution Lin22 (B1-) in ARS305 by two stages overlapping PCRs. Fw primer, pair with DL3371.
 DL3379GTTATGTATTCCTCGAGGTCCCTTTAATTTTAGGATATGInsertion of linker substitution Lin22 (B1-) in ARS305 by two stages overlapping PCRs. Rev primer, pair with DL3370.
 DL3380CATAACCCTCGAGGTAAAAACCAACACAATAAAAAAAAGGInsertion of linker substitution Lin4 (A-) in ARS305 by two stages overlapping PCRs. Fw primer, pair with DL3371.
 DL3381GGTTTTTACCTCGAGGGTTATGTATTGTTTATTTTCCInsertion of linker substitution Lin4 (A-) in ARS305 by two stages overlapping PCRs. Rev primer, pair with DL3370.
 DL1359CCTTATACATTAGGTCCTTTHSP104 Northern PCR probe, fwd. Primes about 100nt upstream HSP104 ATG in PTE
TOFF-HSP104 plasmid serie
 DL1360ATCCCCCGAATTGATCCGGHSP104 Northern PCR probe, rev. Primes upstream BamHI site in PTETOFF-HSP104 plasmid serie
 DL377ATGTTCCCAGGTATTGCCGAACT1 Northern PCR probe/RT qPCR amplicon, fwd.
Oligonucleotides DL378acacttgtggtgaacgatagACT1 Northern PCR probe/RT qPCR amplicon, rev.
 DL2627ATTCAAAAGCGAACACCGAATTGACCATGAGGAGACGGTCTGGTTTATsnR14 Northern oligo probe
 DL3763CTGGTTGAAACAAATCAGTGCCGGTAACARS404 qRT-PCR,
amplicon downstream ARS404 ACS. 5’ primes 202 bp
after SSB1 STOP, pair with DL3764.
 DL3764GACTTTTTCTTAACTAGAATGCTGGAGTAGAAATACGCARS404 qRT-PCR, amplicon downstream ARS404 ACS. 5’ primes 288 bp after SSB1 STOP, pair with DL3763.
 DL3767CTTTTTAAACTAATATACACATTTTAGCAGATGCGARS404 qRT-PCR,
amplicon upstream ARS404 ACS. 5’ primes 23 bp
after HO STOP, pair with DL3768.
 DL3768GATGCTGTCCGCGGGCCTCATAAGARS404 qRT-PCR, amplicon upstream ARS404 ACS. 5’ primes60 bp before HO STOP, pair with DL3767.
 DL3823GGCACTATGCTTTTTAAAATTTTGTTTATACTCAATTTCGARS1004 qRT-PCR, amplicon upstream
ARS1004 ACS. 5’ anneals80 bp after REE1 STOP
 DL3824GCCCAGTATTTTGTTAACTGTATGGATTGTACTAGARS1004 qRT-PCR, amplicon upstream ARS1004 ACS. 5’ anneals170 bp after REE1 STOP
 DL3827GTGTTTTAAGATAAAGTGACGAAAGTTAGGGTGARS1004 qRT-PCR, amplicon downstream ARS1004 ACS. 5’ anneals 228 bp after REE1 STOP
 DL3828CATCATAAGTACTAATTACCACGAATTCAATAATTAGTAAATACARS1004 qRT-PCR, amplicon downstream ARS1004 ACS. 5’ anneals 318 bp after REE1 STOP
 DL187ACACActaaattaccggatcaattcgggggatccATGAACGACCAAACGCAATTCloning of HSP104 in pCM188, fwd.
 DL189catgatgcggccctcctgcagggccctagcggccgcTTAATCTAGGTCATCATCAACloning of HSP104 in pCM188, rev.
 DL1124taatgaggacagtatggaaattgatgatgacctagattaaTTTAATATAGTGTGATTTTTCloning of HSP104 3' UTR in pCM188-HSP104, fwd.
 DL1125ATTACATGATGCGGCCCTCCTGCAGGGCCCTAGCGGCCGCTTTAACATGATTTGGTAGTCCloning of HSP104 3' UTR in pCM188-HSP104, fwd.
 DL4026CGTTTATTCCCTTGTTTGATTCAGAAGCAGARS1 KO in pDL214 by
overlapping PCRs, Fwd. Anneals 236 bp after pDL214’s
URA3 STOP. To be used for both 1 st and 2nd step of the reaction.
During 1 st step, use it in combination with DL4027. During 2nd step, use it in combination with DL4030.
Oligonucleotides DL4027GCTAGCAAGAATCGGCTCGGGGCTCTCTTGCCTTCCAACARS1 KO in pDL214 by overlapping PCRs, Rev. Anneals 334 bp after pDL214’s URA3 STOP.
To be used during 1 st step in combination with DL4026.
 DL4029CAAGAGAGCCCCGAGCCGATTCTTGCTAGCCTTTTCTCARS1 KO in pDL214 by overlapping PCRs, Fwd. Anneals 746 bp after pDL214’s URA3 STOP. To be used during 1 st step in combination with DL4030.
 DL4030GATTACGAGGATACGGAGAGAGGARS1 KO in pDL214 by overlapping PCRs, Rev. Anneals 843 bp after pDL214’s URA3 STOP. To be used for both 1 st and 2nd step of the reaction. During 1 st step, use it in combination with DL4029. During 2nd step, use it in combination with DL4026.
 DL4032GTGAAGGAGCATGTTCGGCACACARS1 KO in pDL214 by overlapping PCRs, Rev sequencing primer. Anneals 1157 bp after pDL214’s URA3 STOP.
 DL4000TTCAAATGTACAGTAACTATCAAAACCATT
ATTGTAGTACCCGTATTCTAATAATGAGCAAAAGAGCTCACATTTTAACG
Reverse ARS1206 orientation in pDL214, Fwd.
Bears 55 bp of homology with ARS1206 3’ end (+320 to+375 after HSP104 STOP) followed by 25 bp of homology
to 5’ of T-rich predicted ACS (+102 to+127 after HSP104 STOP). Pair with DL4001.
 DL4001TATATATAATTAATAAAACTAATGGAATTTGTTTAATTGAACTTGACACCCGAGCGGACCAATCCGCGTGTGTTTTATACReverse ARS1206 orientation in pDL214, Rev. Bears 55 bp
of homology with ARS1206 5’ end (+51 to+106 after HSP104 STOP) followed by 25 bp of homology with 3’ end of ARS1206 (+295 to+320 after HSP104 STOP). Pair with DL4000.
 DL4061ATTATTAGAATACGGGTACTACReverse ARS1206 orientation in pDL214, extension of homology region downstream ARS1206, Fwd. Primes 134 bp upstream CYC1 terminator. Pair with M13 reverse (DL2163).
 DL2163caggaaacagctatgacReverse ARS1206 orientation in pDL214, extension of homology region downstream ARS1206, Rev.
 DL4066GCTCGGGTGTCAAGTTCAATTAAACReverse ARS1206 orientation in pDL214, extension of homology region
upstream ARS1206, Rev. Primes 106 bp downstream HSP104 STOP. Pair with DL530.
 DL530GTTGAATTTAACTCAAGAGGCReverse ARS1206 orientation in pDL214, extension of homology region upstream ARS1206, Fwd. Anneals 2409–2429 in
HSP104.
Oligonucleotides DL3986gctgaagaatgtctggaagttctaccReverse ARS1206 orientation in pDL214, Fwd sequencing primer annealing 108 bp before HSP104 STOP.
 DL163acattttcatcacgagatttacccRNase H cleavage assay. HSP104, antisense, position 2606–2583
from HSP104 ATG.
 DL164ttatcgtcatcacctaacgtgtcagcccctatagtagcttcgtgatttggtagaacttccRNase H cleavage assay. HSP104 Northern oligonucleotide probe, antisense, position 2718–2631 from HSP104 ATG.
 DL473TTTTTTTTTTT
TTTTTTTTT
RNase H cleavage assay. Poly(dT) oligonucleotide
 DL3991GATTTGACGTCCAGTGGACTTTTTTGTCCRNase H cleavage assay, testHSP104 readthrough on pDL905, antisense, position 2923–2895 fromHSP104 ATG
 DL3994GGAAGTAATAAGTGAAGGTTAAATCTGGACCRNase H cleavage assay, test HSP104 readthrough on pDL907, antisense, position 2909–2879 from HSP104 ATG
 PlasmidsNameFeaturesReference
 pDL454PTETOFF-HSP104::Reb1BS::HSP104, PGAL1-
CUP1, 2µ, URA3
Colin et al. Colin et al., 2014
 pDL551PTETOFF-HSP104::
Reb1BS(−)::HSP104, PGAL1-
CUP1, 2µ, URA3
 pDL790PTETOFF-HSP104::ARS305_548 bp::HSP104
, PGAL1-CUP1, 2µ, URA3
This study
 pDL793PTETOFF-HSP104::ARS305(A−)_548 bp::HSP104,
PGAL1-CUP1, 2µ, URA3
 pDL909PTETOFF-HSP104::
ARS305_175 bp::HSP104,
PGAL1-CUP1, 2µ, URA3
 pDL910PTETOFF-HSP104::
ARS305(A−)_175 bp::HSP104,
PGAL1-CUP1, 2µ, URA3
 pDL911PTETOFF-HSP104::ARS305(B1−)_175 bp::HSP104, PGAL1-CUP1, 2µ, URA3
 pDL912PTETOFF-HSP104
::ARS305(B4−)_175 bp::HSP104
, PGAL1-CUP1, 2µ, URA3
 pDL913PTETOFF-HSP104
::ARS305(B1−B4−)_175 bp::HSP104,
PGAL1-CUP1, 2µ, URA3
 pDL30PTETOFF-HSP104,
ARS1, CEN4, URA3
Libri laboratory
 pDL214PTETOFF-HSP104,
ARS1206, ARS1, CEN4, URA3
 pDL905PTETOFF-HSP104, ARS1206, ∆ars1, CEN4, URA3This study
 pDL907PTETOFF-HSP104, 6021sra, ∆ars1, CEN4, URA3
Table 2
Coordinates of primary and secondary ACSs used in this study. 
https://doi.org/10.7554/eLife.40802.009
Proposed primary ACS (Nieduszynski et al., 2006)Putative secondary ACS (this study)
IDChromosomeStrandStartEndMatchScoreChromosomeStrandStartEndMatchScoreProtected length (nt)
1chrI+3100131018TATTTTTAAGTTTTGTT0.974909231chrI-3119031173GTATAATATTTTTAGTT0.87301127189
2chrI-7043170414ATTTTTTATGTTTAGAA0.949548431chrI+7025170268ACTATCAATGTTTTATC0.818662772180
3chrI-124526124509ATTTTTTATATTTAAGT0.939615332chrI+124412124429GTTTTCTCTATTTAAAT0.76163459114
4chrI+159951159968TTTATTTATATTTAGTG0.951660057chrI-160108160091ATATAGCATAATTACTT0.796339361157
5chrI+176234176251TCTTTTTATGTTTTCTT0.936946746chrI-176333176316TAAATATGTGTTTATTA0.81662182199
6chrII+2898429001TCACTCTATCTTTTTTA0.78989004chrII-2909229075TATAACAAAAATTGGTC0.767973746108
7chrII-6337663359TTTTTTTAATTTTTGTC0.934538928chrII+6325663273TAAAAATTTGTTTTCTT0.843331211120
8chrII-170228170211CCAGTGAACGCTTAAAA0.646819795chrII+170126170143CTTTGCTACGATTTCTT0.763191826102
9chrII-198382198365AACTTCAAAGTACATTG0.673812699chrII+198228198245ATTATAGACTTTCATTC0.772245255154
10chrII-237832237815AAGGTACATAGCGATTT0.628400298chrII+237685237702TTATTAAAGGGTTTGGA0.774836934147
11chrII-255040255023AGGTAGAAGAGTTACGG0.617416402chrII+254892254909TGATTTTTCATTTTACT0.841326164148
12chrII+326149326166CTATCGAAACTTTTGTT0.748562634chrII-326273326256CTTTTAATAGTTTAGGT0.860235002124
13chrII-408006407989TAGGAAAATATATAGAG0.708025047chrII+407871407888ATATTTAAAGAGTTGAA0.77590664135
14chrII-417974417957TGTAGAAATGTCTAGCG0.67916971chrII+417844417861AAATTTAATATTTTTGA0.912902242130
15chrII-486855486838GAAGTCCTCTTCTTCGC0.639951668chrII+486735486752ATTAATTATGTTTTTCC0.89533109120
16chrII+622713622730TATATAGAAAGTTGCTT0.760778109chrII-622866622849TTTTTGTACGTTTTTTT0.907808059153
17chrII+704289704306CTACCAAAAGTGTACCG0.581803503chrII-704455704438AATGTTTTTTTTTTTTT0.897759223166
18chrII-741746741729CGAAAAGATATGTGGGA0.64946824chrII+741628741645TAAGATCAAGTTTGGTA0.824844021118
19chrII+757441757458TAAATCTAAGATAGCTG0.682422088chrII-757613757596GTTATATAAGTATACGT0.779064174172
20chrII+792164792181TATTTCATGGTTTTTAG0.736834685chrII-792287792270CTTTTTAAAATTCATTG0.834945362123
21chrIII+1125411271TTTTTTTATGTTTTTTT0.985847127chrIII-1140011383GTTGAATTTGGTTAGAT0.782826917146
22chrIII-3959139574TTTTTATATGTTTTGTT0.963617028chrIII+3947639493TTATTTTTTATTTACTT0.914777509115
23chrIII+7451874535TGTATTTATATTTATTT0.944792175chrIII-7468274665GAGATCTTAATTTATCT0.770457519164
24chrIII-108972108955TTTATTTATGTTTTCTT0.960865701chrIII+108832108849TAGAAATATGTTGAGTT0.795588546140
25chrIII+132036132053TTTGTACATTGTTTATA0.792015393chrIII-132155132138CTTTTATATGTTTAAAT0.885104513119
26chrIII+166650166667GTTTTATTCCATTATTT0.81768767chrIII-166768166751ATTATTTACATTTACGA0.903103359118
27chrIII+194302194319CTACTGCAATTTTTTAC0.730959168chrIII-194402194385TGTAATTACATTTCTTA0.79211775100
28chrIII-197559197542AATATTCATGTTTAGTA0.934784063chrIII+197415197432ATCTTAAACCTTTTTAG0.797219912144
29chrIII+224856224873TCAGTTTTTTTTATGTT0.78153895chrIII-224956224939TTTATTTTTGTTTGTTT0.899494022100
30chrIII-273030273013TTTTTTCAAATTTAGTT0.94325972chrIII+272904272921TTTATTCAAAATTTTTC0.870692365126
31chrIII+292584292601TATATATATATTTATTT0.933162383chrIII-292695292678TATAATAACATTTTTTA0.881496782111
32chrIII+315872315889TGTATATAAATTAAGTG0.777607317chrIII-315979315962CATTTTAATATCTATAT0.829435873107
33chrIV-1568115664ATTTTTTACGTTTTCTC0.928797007chrIV+1552515542TAAATTCTAAGTTATTC0.806599978156
34chrIV-8612386106GATTTTTATGTTTGGGC0.907628171chrIV+8599686013CTTTATAAAGATTTTAT0.843543061127
35chrIV+123677123694TGTTTTCACTTTGTGTT0.820618605chrIV-123793123776TTAATATATATTTAGTT0.9347773116
36chrIV-212592212575TTTTTTTATATTTTGTT0.991320747chrIV+212441212458TTTTTTTTTTTTTTTTT0.926463613151
37chrIV+253839253856ATTTTTTATAGTTTTGC0.901024131chrIV-253948253931TAATTTTATCTTTAGAT0.940018266109
38chrIV-329742329725GATTTTTATTTTTTTGT0.930581986chrIV+329601329618TATTATTATTATTATTC0.884653435141
39chrIV+408134408151TTATATTATATTTAGCG0.896228674chrIV-408291408274TTATTACATATTTTTGT0.898263462157
40chrIV-484039484022TTTTTTTATATTTATGT0.972409126chrIV+483896483913TTGTTTGTTCATTTCTT0.792451309143
41chrIV-505522505505TTTTTTTATATTTTTGC0.95203234chrIV+505345505362CCTTTTCACGTTTTTGC0.864843823177
42chrIV-555401555384AAAGTTTATGTTTTTTC0.925775335chrIV+555290555307ATAAATGTTGTTTTTTT0.835510567111
43chrIV-567681567664TTTTTTTATGTTTTGAG0.946669447chrIV+567572567589ACTTTTAATTTTTTTTT0.905571442109
44chrIV-640068640051TTTTTTAAAGTTTTGGT0.951500543chrIV+639918639935CTATAATATATTTATTC0.86149187150
45chrIV+702928702945AAAATAATTAATGTTTT0.737939741chrIV-703030703013TGATTTAAAATTCTGTA0.83908476102
46chrIV+748452748469AAATTAATTGATTAATT0.822458971chrIV-748585748568TTTTTTAATATTTAATA0.915446997133
47chrIV-753339753322TTTTTTTACATTTTGCT0.953908195chrIV+753221753238AAACTTATTTTTTAAGC0.78950557118
48chrIV+806097806114CTCTTCCAAATTTTTAA0.777746734chrIV-806256806239TCATATCCTGTTTTAAA0.722790604159
49chrIV+913859913876TTTTTTTATTTTTATAT0.943491396chrIV-913957913940ACAATTTTTGTTTATTT0.88537156798
50chrIV+921736921753TCTTTAATCGATTTTAA0.773941597chrIV-921840921823TTTGTTTATTTTTTTTT0.943438157104
51chrIV-10168541016837TTTGTTTACGTTTTGGA0.934312886chrIV+10166821016699AGAATTCATTTTAATCT0.772819262172
52chrIV+10578861057903TTCTTTTATTATTTTTT0.899933367chrIV-10580171058000AAAGTGAATTTTTTTGT0.837029199131
53chrIV-11101391110122TTTTTTTATATTTTTAT0.956467815chrIV+11099601109977GAATTCTTCATTTAGAT0.824896005179
54chrIV-11594521159435CTTTTCTAAGCTTTGAA0.769370807chrIV+11592861159303ATAATTAATTTTTTTGA0.889208627166
55chrIV-11661661166149TCGGAATATTATTTCTT0.763125812chrIV+11660641166081CTTAATAAATTTTTGTA0.854045557102
56chrIV+12409201240937CTTCTTGAAATTTGATT0.771311686chrIV-12410961241079TTTATAAAAATTTATAT0.871453601176
57chrIV+12762711276288TTCGTTTTCTTTTTCTC0.82062871chrIV-12764051276388CAAATATATATTGATCA0.767679431134
58chrIV-13027631302746TATATATTTAGTTAATG0.795859241chrIV+13026161302633GAGTTTTACGTATTCTT0.80224896147
59chrIV+14043231404340TAAAATCATTTTCTTTT0.829710275chrIV-14045111404494AGGATTCTTTATTACGT0.774058834188
60chrIV+14618901461907GAGTAACTTCTTGTCGG0.624436491chrIV-14620381462021AACATTAATTGTTGTTA0.790149896148
61chrIV-14870981487081TTAAATTTAGTTTTTTT0.870549799chrIV+14869651486982CCAATACATGATTGGAT0.773138313133
62chrV-5946959452AATATTTACATTTTGAT0.935717414chrV+5936359380TTTTTTTTTCTTTTTTT0.922560213106
63chrV+9405594072CAAGTTTATATTTTGTT0.938620288chrV-9417394156TATGTTTAATTATATTG0.79888376118
64chrV-145714145697CAGTTTTTTGTTTAGTT0.906995194chrV+145608145625TTATATAATATTTTAGG0.854409653106
65chrV-173808173791TAATTTTATATTTTGCC0.93759113chrV+173704173721TATTTATACTTTTACGG0.861582181104
66chrV+212455212472TAAAATTATGTTTAGGT0.938368393chrV-212555212538CGTATACTTTTTTTGTG0.794230687100
67chrV+287567287584TTTATTTATGTTTTGTT0.988690479chrV-287761287744CTTTGTTATCTTGTGAA0.729422588194
68chrV+353586353603AATATTTACTTTTTGGT0.936542643chrV-353774353757TTGAATTATGCTTATGT0.812386986188
69chrV-406906406889TTTTTTTATATATAGTC0.881971164chrV+406734406751GTAATTTATGATTAATC0.864888268172
70chrV-439105439088ATTTTTTAAGTTTTGCG0.915882066chrV+438997439014GGTATTCTTCTTTTTCT0.814453982108
71chrV+549589549606TATTATTAATATCTTGT0.818517794chrV-549686549669TAATTTAATATTTTTTT0.94848233297
72chrVI-167738167721TATATTTATATTTTCGT0.945765544chrVI+167551167568AATATTTAAATATAAGT0.814242246187
73chrVI+199397199414TTATTTCGAGCTTTGTC0.737504399chrVI-199507199490ATCCATAATATTTACCT0.801830214110
74chrVI+216470216487CATTTCTATTTTTTTTT0.890722071chrVI-216600216583TAATGTGATGGTTAGTT0.802062704130
75chrVI-256383256366TTTATGTTTTTTCCGGA0.701845209chrVI+256263256280AAAAATTCCGATCTTGT0.72753389120
76chrVII-6445864441ATTTTTAATATTTTGTT0.966859378chrVII+6435764374TATTGTTATATTTAGTT0.901272249101
77chrVII+112124112141ATTTTATACGTTTATGT0.921703978chrVII-112271112254ATAGTTTTTTTTTATGC0.861155565147
78chrVII+163235163252TCATTTTATAATTTGTT0.916233817chrVII-163378163361GTAATATATGATTAGAA0.844307348143
79chrVII+203971203988ATTTTTTATATTTATTA0.950625858chrVII-204165204148CATTTTAAACTCTATAT0.78805761194
80chrVII+286003286020TTTATTTACTTTTAGTC0.933155022chrVII-286153286136CTAGTAATCTTTCAGTC0.747097252150
81chrVII-352863352846TTTAATTACGTTTAGTT0.942276914chrVII+352758352775TACTTTTATGATTCATT0.812763403105
82chrVII-388846388829TTTATTTAACTTTTGTT0.939702794chrVII+388738388755TTAGTTCTCATTTATAA0.82432824108
83chrVII-421280421263ATAAATTATTGTTTAGT0.826708937chrVII+421176421193CTATTTCAAATTTGTTT0.859366438104
84chrVII-485110485093TTTATTTATGTTTTGCC0.947613634chrVII+484978484995AATTATCAAGTTTTTCT0.875154553132
85chrVII-508907508890CATTTTAATGTTTGGTT0.923555282chrVII+508801508818ATCTTTTATCTTTTATC0.872797056106
86chrVII-568660568643AGTATTTATATTTAGCC0.909439604chrVII+568509568526GTCATTCATGATTTATT0.834093344151
87chrVII+574700574717AGTATTTATGTTTTGTC0.937749085chrVII-574854574837TATACTCATATTTTGGC0.838055118154
88chrVII-660000659983ATATTTTATGTTTACTT0.952756007chrVII+659904659921TTGTTTTTTTATTGTTT0.82381995196
89chrVII+715314715331TTTGTTTATATTTTGTT0.970567449chrVII-715431715414AATCTTTAACTTGTGAT0.779912848117
90chrVII+778013778030CTTTTTTACCTTTTGTT0.938434047chrVII-778193778176AGTGTTTATATTTATTT0.926919799180
91chrVII-834664834647TTGTATATAGTTTAGTT0.854509956chrVII+834549834566GGTTTTTAACTTTTCCC0.830646453115
92chrVII+888412888429TATTTTAATATTTTGTT0.973625821chrVII-888567888550TTTATATATATATATTC0.823335292155
93chrVII-977904977887TTTTTTAATTTTTTTAT0.925318963chrVII+977810977827TTTTTTTAATGATTTTT0.80600094294
94chrVII+999468999485CTTTTTTACTTTTTGGG0.904948204chrVII-999575999558TATTTTTTTTTTTTTTT0.925871289107
95chrVIII-77557738TATTTTTATATTTAGGT0.984899843chrVIII+76187635CTTGTTTATTATTATTA0.875022851137
96chrVIII+6430264319TAATTTTAATTTTAGTT0.942262943chrVIII-6443464417ATTCTTTATATTTATTT0.922675429132
97chrVIII-133538133521TATTTTAACATTTAGTT0.959052991chrVIII+133406133423TTCTTTTATGTGTATGC0.834208883132
98chrVIII+168597168614TTGTGTCATATTTAGAC0.799695233chrVIII-168793168776TATATATATATATACGT0.820409776196
99chrVIII+245788245805CTATTTTATGATTAGTT0.939777326chrVIII-245940245923CAATTCCAAATTTAGGC0.831524522152
100chrVIII-392260392243TTTTTTCTTGAGTACTT0.788764838chrVIII+392088392105ATAATTTACATTAATAT0.821200767172
101chrVIII-447794447777TATGTTTATGTTTTGTG0.947093715chrVIII+447598447615TTGCTTAATATTTTGCA0.846461752196
102chrVIII-501949501932CGTTTATACATTTTGTT0.896794884chrVIII+501752501769ATATTTTACGGTTCTTT0.824337524197
103chrVIII+556140556157AATTTTTACGTTTAGGT0.969507836chrVIII-556301556284CATTTTAATATCTATAT0.829435873161
104chrIX-105966105949ATTATTCATGTTTTCTT0.92780469chrIX+105812105829AATAATAATAATAATGG0.754881026154
105chrIX-136290136273GCAGTTTATGTTTTGTT0.905839044chrIX+136160136177GATATCTATATTTTATA0.840946348130
106chrIX+175173175190ATGTTTTATGTTTTGTC0.936874196chrIX-175339175322CAATTTCAAATTTAAAA0.82970169166
107chrIX+214735214752TTAATTTATGTTTTGTA0.95530712chrIX-214909214892TGTTTTTATATATTCGT0.841209426174
108chrIX-245882245865TTTTTTAATGTTTTGTC0.962520612chrIX+245773245790CCTTAAAAAGGTCTCAC0.67119524109
109chrIX-247754247737TTTTTTAATGTTTTGTC0.962520612chrIX+247631247648TACATTTCTCTTTTTTT0.823299168123
110chrIX-342031342014TTTTTTAATGTTTAGCT0.961127508chrIX+341853341870TAAGGTCTTGTTTGTTT0.760099392178
111chrIX+357225357242AATTTTTATATTTTGTT0.983369656chrIX-357356357339TATTTATAGATTTTTCT0.83281607131
112chrIX-412003411986AATTTTAATGTTTTGTC0.954569521chrIX+411895411912AAGGTATAAATGTAGTT0.778441725108
113chrX-77317714TATTTTTATGTTTAGGT0.992509265chrX+75707587CATTTTAATATCTATAT0.829435873161
114chrX-6771467697CTTTTTTATTTTTTTTT0.944897067chrX+6759367610AAAATTAATAAATTTCC0.769826733121
115chrX+9949899515TTTTTTAATTTTTTTTT0.947088854chrX-9962599608TTTATTTATGTTTTGTT0.988690479127
116chrX+298616298633TGACTCTAACTCCAGTT0.666661983chrX-298725298708CTAATAAAACTTTTTCC0.801772328109
117chrX+337049337066CTTAAATAAGGTGAAGA0.678459288chrX-337193337176CTCTTGCTTGTTTAGTT0.819488866144
118chrX+374633374650AATTACTACAATTTTCG0.788091986chrX-374774374757GAAATTTACATTTATTT0.914653679141
119chrX-375586375569TTAGTGCAAAATATGAG0.674815863chrX+375403375420TTCTTTAAACTTTTTGA0.856145267183
120chrX-417088417071TTGATGCACTATCATGA0.704755133chrX+416918416935GATTTCTATGTTCTCGA0.808544598170
121chrX+540294540311GGGTAAAATGCGCTGTA0.572247037chrX-540461540444AAAAATTACTTCCAGTT0.755451504167
122chrX-612772612755CACCAACAAATTGACAG0.600434727chrX+612662612679GGATTTCATAATTGTGG0.785437954110
123chrX-654253654236TAAAGTTAACGTAACCA0.631991513chrX+654127654144TCAAAACTTGATTTGTT0.783019587126
124chrX+683708683725CAGATAAAACAGCATAT0.624200951chrX-683904683887GTATTGTACATTTACCT0.826577659196
125chrX+711652711669ATTTCTAATGCCTTGTG0.672178619chrX-711852711835TTTGTTCACTGTTAGTT0.872596683200
126chrX+729810729827TAGTTGAATAATTCGTA0.742850129chrX-729989729972CGATTAAGCGTTTTGCC0.743397787179
127chrX-736901736884CAATTGGAAAATTAGTG0.76415065chrX+736789736806TGTTTGAGTGTTCAGGT0.744514544112
128chrX+744625744642TAATTAGCACTTCTCCC0.637153506chrX-744819744802GTAATATAACTGTACTC0.72903611194
129chrXI-5586655849TTCATTAATGTTTAGTT0.937267458chrXI+5568555702ATTTTTCATCTTTATTA0.906973964181
130chrXI+9838498401TTTTTTTATGTTTAGTG0.969509169chrXI-9853098513GTACTTTATTTTTGGTT0.851436401146
131chrXI-153120153103AATTTTTACAATTTGTC0.919552201chrXI+152995153012TAGTTATAAGATTATCT0.841554901125
132chrXI-196216196199TTTTTTCATTTTTTGTT0.951572253chrXI+196020196037TTTGCTCATTTTTAAGT0.795946302196
133chrXI-213317213300AGAGTTTGTCATTACCA0.719440701chrXI+213207213224ATTAATAATCTGTATTT0.803703635110
134chrXI-329497329480GGTACTGAAATTTCGGT0.675926258chrXI+329388329405AAAATTCTTGATGTGTT0.785345702109
135chrXI+388665388682GGTGTTTAAGGGTAAAT0.710373823chrXI-388778388761TTCGTTTTTAGTTAGTA0.833546833113
136chrXI+416880416897CGCGAGATCCATAGGCT0.528888624chrXI-416990416973TATATTCTTGATTGGAT0.835644767110
137chrXI-447845447828CACATACATATTTTAAC0.785193796chrXI+447678447695GTAATAAATATTCTCAT0.786845724167
138chrXI+516676516693ACTTGTTATGGTTATGT0.80432569chrXI-516825516808CATAATTGCCTTTTCTT0.777169896149
139chrXI+581535581552ACTATGTATCTTGCAGT0.639967512chrXI-581699581682TATTTTTTTAATTATGC0.885914166164
140chrXI-612054612037TTTGGATTCATCTAACG0.610536381chrXI+611861611878GAGAATGACGATTCCGT0.681607383193
141chrXI+642416642433GGATGCGACATTTAACT0.658787349chrXI-642546642529CGCTTATATGTTGGTAT0.720382898130
142chrXII+9146791484CATTTTAACGTTTAGTT0.947368024chrXII-9159591578TCCTTTAAACTTTAGTT0.864360818128
143chrXII+156701156718TGATTTTACTTTTTGGA0.897074392chrXII-156822156805TAAGATTACGTTTTTAA0.861864859121
144chrXII+231249231266TTTGTTTATATTTTTGT0.950585996chrXII-231358231341GTTGTTTAGTTTTATTT0.830642974109
145chrXII-289420289403AAAATTAATGTTTTGCT0.929806448chrXII+289325289342TATATCCTTCTTTATAT0.81174322495
146chrXII-373327373310TTTTTTTATATTTTCTC0.944189014chrXII+373227373244TTCGATAAAGGTTTGTC0.807458273100
147chrXII-412852412835ATGTTTTTTGTTTTGTT0.918453308chrXII+412678412695GTTTTGTACCTTTAGCT0.848513235174
148chrXII-450659450642TTTTTTTATATCTTGCT0.878438397chrXII+450505450522CGTTTTTATGTTTATTC0.924039943154
149chrXII-459090459073ATTGTTTATGTTTTGTG0.940327272chrXII+458995459012CTATTCTATGTTTTCTT0.88616788295
150chrXII-513083513066TTTATTTATGTTTTTGT0.968709027chrXII+512958512975ATTATAAACATTTTATA0.845822907125
151chrXII-603109603092TTTTTTAATGTTTATGT0.962915946chrXII+602997603014GTTTTTATCAGTTTCAT0.801484796112
152chrXII+659892659909GCTTTTTATGTTTATTT0.92663958chrXII-660003659986AGTATTCATGTTTTACT0.871065837111
153chrXII-745115745098TATCTTTATGTTTTGTT0.949064504chrXII+745006745023TCGTTCAAACTTTTGTC0.79040136109
154chrXII-794207794190AAAGTTTAAGTTTAGTT0.935806549chrXII+794096794113TTTGATCATAATTATTT0.872143422111
155chrXII-888740888723GTTTTTTATGTTTAGAT0.952111375chrXII+888618888635AATTTTTATAATTAATG0.88656275122
156chrXII+10072321007249ATGTTTCATATTTTTAT0.888016553chrXII-10073381007321AAAATTTATAATTTAGT0.886785202106
157chrXII+10137891013806TTTTTTTATGTTTTCTC0.951798435chrXII-10138821013865AAACAGTACGTATTTTT0.71556998593
158chrXII-10241561024139CTTAATGATGTTTAGTT0.887516109chrXII+10240171024034CTAGTTTTTAATTATAT0.838833831139
159chrXIII+3176631783GTAGTTTATTATTAGTT0.89054401chrXIII-3187631859CATTAAAATAATTATAT0.824526619110
160chrXIII-9439094373ATTAATTATATTTAGAT0.921181496chrXIII+9426694283ATGTTAAATATTTTATT0.857637919124
161chrXIII+137321137338AATATTTATGTTTTGTT0.980739388chrXIII-137437137420TTGTTATTTATTTTTGA0.841585149116
162chrXIII-184017184000GTTATATATGGTTAGTT0.884678994chrXIII+183864183881ACATTAAATATTTTTGG0.834854862153
163chrXIII+263126263143ATTTTTTATATTTTGTG0.953471148chrXIII-263313263296TATGTATATATTTATCT0.900878883187
164chrXIII+286846286863ATTTTTCTTATTTAGTT0.921601724chrXIII-286946286929AGGATTTATGTTTTTTT0.908582747100
165chrXIII+371020371037AATTTTATTGTTTAGTT0.937218464chrXIII-371128371111CACTTATATTTTTTTAT0.851831461108
166chrXIII+468237468254TTTTTTTATTTTTTGTT0.977274497chrXIII-468357468340ATCATTTTTAATTAGTA0.851483278120
167chrXIII-535770535753TTAATTTATATTTAGTT0.970090441chrXIII+535662535679AGTTGTTTTGTTTTTTT0.82595884108
168chrXIII+611318611335ATTGTTTATGTTTATGT0.951906482chrXIII-611459611442ATTTGGCATCATTGTAT0.685281331141
169chrXIII+634521634538TATTTTTACTATTTGTA0.910848762chrXIII-634639634622CAATTTTATGGTCATTT0.857274617118
170chrXIII+649362649379TTATTTCATATTTTGTT0.953558055chrXIII-649549649532CTTACTAACAATTTCTC0.76251583187
171chrXIII-758417758400AAATTTTATGTTTTTTT0.965835588chrXIII+758312758329ACTTAGCGCGGTTTTTT0.674331603105
172chrXIII+772677772694TTTTTTTACTATTACTT0.90600905chrXIII-772820772803AATTTATACAACTATAT0.778650456143
173chrXIII+805162805179TATTTTTGTATTTAGTC0.881724676chrXIII-805312805295TTTTTTTACCTTTTTCC0.903568549150
174chrXIII+815391815408AAATTCTATGTTTTGTT0.925335958chrXIII-815493815476ATTTTTTTTTTTTTGGA0.903966564102
175chrXIII-897976897959TTTTTTTATGTTTGGTT0.960544596chrXIII+897881897898TTATTTTATCATTTTCT0.8975898895
176chrXIV-2865428637TTTTTTTATTTTTAGGT0.971445917chrXIV+2848628503AAGTTAGATAATTAGCG0.781498458168
177chrXIV+6169561712GTTTTTAATGTTTTGTA0.934385921chrXIV-6185761840TTTATTTAAATTTTGCC0.916575598162
178chrXIV-8975689739TATTTTTAAGTTTTGTT0.974909231chrXIV+8964489661CTACTTATAGTTTTTCT0.805190002112
179chrXIV-169748169731TAATTTAACGTTTTGTT0.953532134chrXIV+169589169606TTTATATATATGTATGT0.835743836159
180chrXIV-196225196208TTTTTTAACTTTTAGCC0.904522219chrXIV+196096196113TTCGTAAAAATTTTTGC0.820044435129
181chrXIV-250464250447AATTTTTACGGTTTTTT0.918603933chrXIV+250330250347GATAAACATATTCTTGT0.787486687134
182chrXIV-280066280049ATTATTTATGTTTTTCT0.94647878chrXIV+279948279965ATAATAATTAATTAGTT0.843720251118
183chrXIV+322003322020TTTGTTTACGTTTAGGC0.937398674chrXIV-322198322181GTTATAAATATTTATAA0.847440569195
184chrXIV-412441412424TTTTTTTATATTTCTGC0.869234054chrXIV+412299412316CAACTTCTACATTACAT0.72789922142
185chrXIV-449536449519CATATTTACATTTAGCC0.905544669chrXIV+449372449389TAAATACACTGTTATTT0.822061337164
186chrXIV+499040499057TTTCTTTATGTTTAGCT0.928956769chrXIV-499150499133TATCTCTTCTTTTTGTT0.820455656110
187chrXIV-546149546132TATTTTTACGTTTTGGC0.956489817chrXIV+545981545998AACATTAGTATTTAATT0.792422254168
188chrXIV-561330561313TTTGTTCACATTTAGTT0.930292374chrXIV+561216561233TTGATTTACATTCAAAC0.797477323114
189chrXIV+609536609553TTTTTTTATGTTTATTT0.986916959chrXIV-609674609657TATTTATGTCTTTACTT0.819944062138
190chrXIV-635833635816TTTTTTTAATTTTAGTT0.954915715chrXIV+635716635733TGTTTTTTTTTTTTGCA0.87217818117
191chrXIV-691680691663GTAATTAACATTTTGTT0.910156612chrXIV+691559691576GATATTTCCCTTTTGGA0.801789741121
192chrXV+3571435731TATATTTATATTTAGAG0.929297843chrXV-3585535838CATATTTATGTTTCATT0.847487414141
193chrXV+7268872705TTTTTTTACTTTTAGTT0.962701666chrXV-7279472777TTTTATCACGTTTAGCA0.883721557106
194chrXV-8536685349TATACCTATATTTATGT0.817468435chrXV+8526885285GCTTTTAATTTTTATTT0.88788130798
195chrXV+113895113912ATTGTTTATATTTTTGT0.943227229chrXV-114058114041TAATATCATGTTTTATA0.868893438163
196chrXV+167003167020TTTATTTATGTTTTCGT0.95396729chrXV-167143167126TTTAAAACTGTTTACGT0.78001402140
197chrXV-277732277715GTTGTTTATCTTTTGTT0.926499065chrXV+277562277579TTATAAAAAATTTATTT0.859561998170
198chrXV-337483337466TCTTTTTACCTTTTGTC0.904262836chrXV+337385337402TATTTTAGTATTTATTT0.87084598898
199chrXV+436790436807TATATTTATTTTTATTC0.935122318chrXV-436888436871TTCTTTTTTCATTTATT0.83286709898
200chrXV-490060490043GTTGTTTTTCTTTTCTT0.860946443chrXV+489890489907TAAGTTTATATTTTGGT0.951016266170
201chrXV-566597566580AAATTTTACCTTTTGAT0.915947006chrXV+566499566516AATATTTAATATCTCTT0.82491674798
202chrXV+656701656718CTATTTAATGATTAGTA0.901351813chrXV-656901656884GTTGATTTCTTTTTCTT0.817366446200
203chrXV+729795729812TATTTTTATATTTTGGC0.964523057chrXV-729894729877TTCTTTCATTTTTGTAC0.82363654299
204chrXV+766689766706GTATTTTACGTTTTTTC0.912718329chrXV-766791766774TATTTTAAATTTCTGTA0.860782306102
205chrXV+783386783403TATTTTTAACTTTTGGT0.942451749chrXV-783582783565TCTTTTTATCTCTTCAA0.777182413196
206chrXV-874370874353CATTTTAATATTTGTTA0.881539907chrXV+874192874209AAGTTTTCCGTTTAGCA0.807156571178
207chrXV+908307908324CTAAACTTTGTTTATGT0.815272772chrXV-908439908422GGTTTTTTTTTTTAAGT0.8448056132
208chrXV+981507981524TTTTTTTATTTATATTT0.874148828chrXV-981603981586TTTTTTCATGATTTTGT0.92437863496
209chrXV+10536871053704TAATTAATTGTTTTGTT0.896133812chrXV-10537971053780CGATTAAATGTTTTTAT0.856030986110
210chrXVI-4315043133TTTGTTTATATTTTTGA0.929263085chrXVI+4295842975TTCTTTTACCTTTAATA0.863567037192
211chrXVI+7310473121GTTTTTTTTGTTTTTTC0.902693595chrXVI-7330173284TATATTTATAATTATAA0.896514883197
212chrXVI+116593116610TATTTTTATGTTTTGTT0.998337845chrXVI-116770116753TAAAATTAAGTTTTGCG0.868507637177
213chrXVI+289531289548ATAATTAATGTTTACTT0.925413716chrXVI-289675289658AAAGTTAATTTTTATAT0.885623957144
214chrXVI+384591384608TATTCTAAAATTTATGT0.840759582chrXVI-384718384701TTTAAATATATTTAAGT0.869580534127
215chrXVI+418177418194TTCTTTCTTATTTACAA0.82265266chrXVI-418289418272TATTATTTTGTTTTCTT0.900944489112
216chrXVI-456763456746TTTTATTATTTTTTGTT0.945433762chrXVI+456626456643CTTATTCACAATTTCAA0.820656345137
217chrXVI+511708511725TATTTTTATGTTTTTTG0.954763972chrXVI-511820511803GTGGTTATCATTTATTT0.826572147112
218chrXVI+563881563898AGTCTTTTATATTTAGT0.760925944chrXVI-563991563974TCTAAATATATTCATCT0.791939697110
219chrXVI+565119565136TGTTTTTAATTTTTAGT0.884153732chrXVI-565272565255TTTTTGGTTCTTTTGTT0.822137769153
220chrXVI+633925633942CGTTTTTATAGTTTAGT0.858684766chrXVI-634064634047TTGTTTTATATTTAACA0.875389458139
221chrXVI+684409684426TTTTTTTTACTTTTTGT0.892233188chrXVI-684534684517CATATGTTTGTTTAGCT0.847979457125
222chrXVI-695624695607TTTTTTTTTAATTTTCT0.889872135chrXVI+695470695487AATTTTTATATTTGGTT0.944984083154
223chrXVI+749121749138AATTTTTAAGTTTAGTA0.947297384chrXVI-749222749205ATAATTTACATTTTATT0.907501113101
224chrXVI-777098777081TTTATTTATATTTTGGC0.954875691chrXVI+776923776940AATGTGTTAGTTTTTCT0.811819984175
225chrXVI-819345819328AATTTTTATATTTATTC0.952049491chrXVI+819204819221TATATTATCATATAGTT0.819972999141
226chrXVI-842856842839TTTATTTAGATTTAGTT0.894404608chrXVI+842714842731AATTTTAATCTTTAGTA0.928064324142
227chrXVI+880904880921CTCATATATATTTTATG0.822074378chrXVI-881035881018TAACTCTAACTTTTTTA0.800027746131
228chrXVI-933170933153CTTATTTACGTTTAGCT0.93305337chrXVI+933047933064ATTCAAAATATTTTGGA0.822210839123

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tito Candelli
  2. Julien Gros
  3. Domenico Libri
(2018)
Pervasive transcription fine-tunes replication origin activity
eLife 7:e40802.
https://doi.org/10.7554/eLife.40802