Pervasive transcription fine-tunes replication origin activity

  1. Tito Candelli
  2. Julien Gros  Is a corresponding author
  3. Domenico Libri  Is a corresponding author
  1. Université Paris-Diderot, France


RNA polymerase (RNAPII) transcription occurs pervasively, raising the important question of its functional impact on other DNA-associated processes, including replication. In budding yeast, replication originates from Autonomously Replicating Sequences (ARSs), generally located in intergenic regions. The influence of transcription on ARSs function has been studied for decades, but these earlier studies have neglected the role of non-annotated transcription. We studied the relationships between pervasive transcription and replication origin activity using high-resolution transcription maps. We show that ARSs alter the pervasive transcription landscape by pausing and terminating neighboring RNAPII transcription, thus limiting the occurrence of pervasive transcription within origins. We propose that quasi-symmetrical binding of the ORC complex to ARS borders and/or pre-RC formation are responsible for pausing and termination. We show that low, physiological levels of pervasive transcription impact the function of replication origins. Overall, our results have important implications for understanding the impact of genomic location on origin function.

Data availability

All data analyzed in this manuscript have been previously published and appropriate GEO accession codes and references have been provided.

The following previously published data sets were used

Article and author information

Author details

  1. Tito Candelli

    Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2440-6032
  2. Julien Gros

    Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Paris Cedex 13, France
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8316-0207
  3. Domenico Libri

    Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Paris, France
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6728-0594


Centre National de la Recherche Scientifique

  • Domenico Libri

Fondation pour la Recherche Médicale (F.R.M. programme équipes 2013)

  • Domenico Libri

Agence Nationale de la Recherche (Grant ANR-16-CE12-0022-01)

  • Domenico Libri

Labex Who Am I? (ANR-11-LABX-0071)

  • Domenico Libri

French Ministry of Research (Fellowship)

  • Tito Candelli

Ligue Nationale Contre le Cancer (GB/MA/CD/IQ - 12031)

  • Julien Gros

Labex Who Am I? (ANR-11-IDEX-0005-02)

  • Domenico Libri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruce Stillman, Cold Spring Harbor Laboratory, United States

Publication history

  1. Received: August 6, 2018
  2. Accepted: December 17, 2018
  3. Accepted Manuscript published: December 17, 2018 (version 1)
  4. Version of Record published: January 2, 2019 (version 2)


© 2018, Candelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,537
    Page views
  • 235
  • 12

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tito Candelli
  2. Julien Gros
  3. Domenico Libri
Pervasive transcription fine-tunes replication origin activity
eLife 7:e40802.

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Claudia C Carcamo et al.
    Research Article Updated

    One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ariel Ogran et al.
    Research Article

    The transformation of normal to malignant cells is accompanied by substantial changes in gene expression programs through diverse mechanisms. Here, we examined the changes in the landscape of transcription start sites and alternative promoter (AP) usage and their impact on the translatome in TCL1-driven chronic lymphocytic leukemia (CLL). Our findings revealed a marked elevation of APs in CLL B cells from Eµ-Tcl1 transgenic mice, which are particularly enriched with intra-genic promoters that generate N-terminally truncated or modified proteins. Intra-genic promoter activation is mediated by (1) loss of function of ‘closed chromatin’ epigenetic regulators due to the generation of inactive N-terminally modified isoforms or reduced expression; (2) upregulation of transcription factors, including c-Myc, targeting the intra-genic promoters and their associated enhancers. Exogenous expression of Tcl1 in MEFs is sufficient to induce intra-genic promoters of epigenetic regulators and promote c-Myc expression. We further found a dramatic translation downregulation of transcripts bearing CNY cap-proximal trinucleotides, reminiscent of cells undergoing metabolic stress. These findings uncovered the role of Tcl1 oncogenic function in altering promoter usage and mRNA translation in leukemogenesis.