Abstract

The subunits of the bacterial RecBCD act in coordination, rapidly and processively unwinding DNA at the site of a double strand break. RecBCD is able to displace DNA binding proteins, suggesting that it generates high forces, but the specific role of each subunit in the force generation is unclear. Here, we present a novel optical tweezers assay that allows monitoring the activity of RecBCD's individual subunits, when they are part of an intact full complex. We show that RecBCD and its subunits are able to generate forces up to 25-40 pN without a significant effect on their velocity. Moreover, the isolated RecD translocates fast, but is a weak helicase with limited processivity. Experiments at a broad range of [ATP] and forces suggest that RecD unwinds DNA as a Brownian ratchet, rectified by ATP binding, and that the presence of the other subunits shifts the ratchet equilibrium towards the post-translocation state.

Data availability

All data generated during this study have been deposited in Dryad under accession code doi:10.5061/dryad.jb10510

The following data sets were generated

Article and author information

Author details

  1. Rani Zananiri

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0094-4197
  2. Omri Malik

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Sergei Rudnizky

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Vera Gaydar

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Roman Kreiserman

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Arnon Henn

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Ariel Kaplan

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    akaplanz@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9731-6962

Funding

Israel Science Foundation (1782/17)

  • Ariel Kaplan

Israel Centers of Research Excellence (1902/12)

  • Ariel Kaplan

Elyhau Pen Research Fund

  • Ariel Kaplan

Israel Science Foundation (1403705/11)

  • Arnon Henn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Taekjip Ha, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: August 6, 2018
  2. Accepted: January 1, 2019
  3. Accepted Manuscript published: January 2, 2019 (version 1)
  4. Version of Record published: January 18, 2019 (version 2)

Copyright

© 2019, Zananiri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,703
    views
  • 244
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rani Zananiri
  2. Omri Malik
  3. Sergei Rudnizky
  4. Vera Gaydar
  5. Roman Kreiserman
  6. Arnon Henn
  7. Ariel Kaplan
(2019)
Synergy between RecBCD subunits is essential for efficient DNA unwinding
eLife 8:e40836.
https://doi.org/10.7554/eLife.40836

Share this article

https://doi.org/10.7554/eLife.40836

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.