Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds

  1. Sonya Entova
  2. Jean-Marc Billod
  3. Jean-Marie Swiecicki
  4. Sonsoles Martin-Santamaria
  5. Barbara Imperiali  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Centro de Investigaciones Biológicas - CIB-CSIC, Spain

Abstract

Monotopic membrane proteins integrate into the lipid bilayer via reentrant hydrophobic domains that enter and exit on a single face of the membrane. Whereas many membrane-spanning proteins have been structurally characterized and transmembrane topologies can be predicted computationally, relatively little is known about the determinants of membrane topology in monotopic proteins. Recently, we reported the X-ray structure determination of PglC, a full-length monotopic membrane protein with phosphoglycosyl transferase (PGT) activity. The definition of this unique structure has prompted in vivo, biochemical, and computational analyses to understand and define two key motifs that contribute to the membrane topology and to provide insight into the dynamics of the enzyme in a lipid bilayer environment. Using the new information gained from studies on the PGT superfamily we demonstrate that the two motifs exemplify principles of topology determination that can be applied to the identification of reentrant domains among diverse monotopic proteins of interest.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sonya Entova

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5270-3336
  2. Jean-Marc Billod

    Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas - CIB-CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-Marie Swiecicki

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7139-8621
  4. Sonsoles Martin-Santamaria

    Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas - CIB-CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Barbara Imperiali

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    imper@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5749-7869

Funding

NIH Office of the Director (NIH GM-039334)

  • Sonya Entova
  • Barbara Imperiali

Ministerio de Economía y Competitividad (CTQ2014-57141-R)

  • Jean-Marc Billod
  • Sonsoles Martin-Santamaria

Jane Coffin Childs Memorial Fund for Medical Research

  • Jean-Marie Swiecicki

NIH Office of the Director (T32-GM007287)

  • Sonya Entova

Ministerio de Economía y Competitividad (CTQ2017-88353-R)

  • Jean-Marc Billod
  • Sonsoles Martin-Santamaria

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Entova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,419
    views
  • 466
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonya Entova
  2. Jean-Marc Billod
  3. Jean-Marie Swiecicki
  4. Sonsoles Martin-Santamaria
  5. Barbara Imperiali
(2018)
Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds
eLife 7:e40889.
https://doi.org/10.7554/eLife.40889

Share this article

https://doi.org/10.7554/eLife.40889

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.