Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds

  1. Sonya Entova
  2. Jean-Marc Billod
  3. Jean-Marie Swiecicki
  4. Sonsoles Martin-Santamaria
  5. Barbara Imperiali  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Centro de Investigaciones Biológicas - CIB-CSIC, Spain

Abstract

Monotopic membrane proteins integrate into the lipid bilayer via reentrant hydrophobic domains that enter and exit on a single face of the membrane. Whereas many membrane-spanning proteins have been structurally characterized and transmembrane topologies can be predicted computationally, relatively little is known about the determinants of membrane topology in monotopic proteins. Recently, we reported the X-ray structure determination of PglC, a full-length monotopic membrane protein with phosphoglycosyl transferase (PGT) activity. The definition of this unique structure has prompted in vivo, biochemical, and computational analyses to understand and define two key motifs that contribute to the membrane topology and to provide insight into the dynamics of the enzyme in a lipid bilayer environment. Using the new information gained from studies on the PGT superfamily we demonstrate that the two motifs exemplify principles of topology determination that can be applied to the identification of reentrant domains among diverse monotopic proteins of interest.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sonya Entova

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5270-3336
  2. Jean-Marc Billod

    Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas - CIB-CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-Marie Swiecicki

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7139-8621
  4. Sonsoles Martin-Santamaria

    Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas - CIB-CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Barbara Imperiali

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    imper@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5749-7869

Funding

NIH Office of the Director (NIH GM-039334)

  • Sonya Entova
  • Barbara Imperiali

Ministerio de Economía y Competitividad (CTQ2014-57141-R)

  • Jean-Marc Billod
  • Sonsoles Martin-Santamaria

Jane Coffin Childs Memorial Fund for Medical Research

  • Jean-Marie Swiecicki

NIH Office of the Director (T32-GM007287)

  • Sonya Entova

Ministerio de Economía y Competitividad (CTQ2017-88353-R)

  • Jean-Marc Billod
  • Sonsoles Martin-Santamaria

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Entova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,370
    views
  • 462
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonya Entova
  2. Jean-Marc Billod
  3. Jean-Marie Swiecicki
  4. Sonsoles Martin-Santamaria
  5. Barbara Imperiali
(2018)
Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds
eLife 7:e40889.
https://doi.org/10.7554/eLife.40889

Share this article

https://doi.org/10.7554/eLife.40889

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marina Dajka, Tobias Rath ... Benesh Joseph
    Research Article

    Lipopolysaccharides (LPS) confer resistance against harsh conditions, including antibiotics, in Gram-negative bacteria. The lipopolysaccharide transport (Lpt) complex, consisting of seven proteins (A-G), exports LPS across the cellular envelope. LptB2FG forms an ATP-binding cassette transporter that transfers LPS to LptC. How LptB2FG couples ATP binding and hydrolysis with LPS transport to LptC remains unclear. We observed the conformational heterogeneity of LptB2FG and LptB2FGC in micelles and/or proteoliposomes using pulsed dipolar electron spin resonance spectroscopy. Additionally, we monitored LPS binding and release using laser-induced liquid bead ion desorption mass spectrometry. The β-jellyroll domain of LptF stably interacts with the LptG and LptC β-jellyrolls in both the apo and vanadate-trapped states. ATP binding at the cytoplasmic side is allosterically coupled to the selective opening of the periplasmic LptF β-jellyroll domain. In LptB2FG, ATP binding closes the nucleotide binding domains, causing a collapse of the first lateral gate as observed in structures. However, the second lateral gate, which forms the putative entry site for LPS, exhibits a heterogeneous conformation. LptC binding limits the flexibility of this gate to two conformations, likely representing the helix of LptC as either released from or inserted into the transmembrane domains. Our results reveal the regulation of the LPS entry gate through the dynamic behavior of the LptC transmembrane helix, while its β-jellyroll domain is anchored in the periplasm. This, combined with long-range ATP-dependent allosteric gating of the LptF β-jellyroll domain, may ensure efficient and unidirectional transport of LPS across the periplasm.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Vineeth Vengayil, Shreyas Niphadkar ... Sunil Laxman
    Research Article

    Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.