Abstract

The cereblon modulating agents (CMs) including lenalidomide, pomalidomide and CC-220 repurpose the Cul4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase complex to induce the degradation of specific neomorphic substrates via polyubiquitination in conjunction with E2 ubiquitin-conjugating enzymes, which have until now remained elusive. Here we show that the ubiquitin-conjugating enzymes UBE2G1 and UBE2D3 cooperatively promote the K48-linked polyubiquitination of CRL4CRBN neomorphic substrates via a sequential ubiquitination mechanism. Blockade of UBE2G1 diminishes the ubiquitination and degradation of neomorphic substrates, and consequent antitumor activities elicited by all tested CMs. For example, UBE2G1 inactivation significantly attenuated the degradation of myeloma survival factors IKZF1 and IKZF3 induced by lenalidomide and pomalidomide, hence conferring drug resistance. UBE2G1-deficient myeloma cells, however, remained sensitive to a more potent IKZF1/3 degrader CC-220. Collectively, it will be of fundamental interest to explore if loss of UBE2G1 activity is linked to clinical resistance to drugs that hijack the CRL4CRBN to eliminate disease-driving proteins.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Gang Lu

    PH TCoE, Celgene, San Diego, United States
    For correspondence
    glu@celgene.com
    Competing interests
    Gang Lu, Employee of Celgene.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2138-1522
  2. Stephanie Weng

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Stephanie Weng, Employee of Celgene.
  3. Mary Matyskiela

    Structral and Chemical Biology, Celgene, San Diego, United States
    Competing interests
    Mary Matyskiela, Employee of Celgene.
  4. Xinde Zheng

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Xinde Zheng, Employee of Celgene.
  5. Wei Fang

    Structral and Chemical Biology, Celgene, San Diego, United States
    Competing interests
    Wei Fang, Employee of Celgene.
  6. Scott Wood

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Scott Wood, Employee of Celgene.
  7. Christine Surka

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Christine Surka, Employee of Celgene.
  8. Reina Mizukoshi

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Reina Mizukoshi, Employee of Celgene.
  9. Chin-Chun Lu

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Chin-Chun Lu, Employee of Celgene.
  10. Derek Mendy

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Derek Mendy, Employee of Celgene.
  11. In Sock Jang

    Research Analytics, Celgene, San Diego, United States
    Competing interests
    In Sock Jang, Employee of Celgene.
  12. Kai Wang

    Research Analytics, Celgene, San Diego, United States
    Competing interests
    Kai Wang, Employee of Celgene.
  13. Mathieu Marella

    NCD - Exploratory Toxicology, Celgene, San Diego, United States
    Competing interests
    Mathieu Marella, Employee of Celgene.
  14. Suzana Couto

    NCD - Exploratory Toxicology, Celgene, San Diego, United States
    Competing interests
    Suzana Couto, Employee of Celgene.
  15. Brian Cathers

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Brian Cathers, Employee of Celgene.
  16. James Carmichael

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    James Carmichael, Employee of Celgene.
  17. Philip Chamberlain

    Structral and Chemical Biology, Celgene, San Diego, United States
    Competing interests
    Philip Chamberlain, Employee of Celgene.
  18. Mark Rolfe

    PH TCoE, Celgene, San Diego, United States
    Competing interests
    Mark Rolfe, Employee of Celgene.

Funding

No external funding was received for this work

Reviewing Editor

  1. Wade Harper, Harvard Medical School, United States

Version history

  1. Received: August 10, 2018
  2. Accepted: September 19, 2018
  3. Accepted Manuscript published: September 20, 2018 (version 1)
  4. Version of Record published: October 12, 2018 (version 2)

Copyright

© 2018, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,851
    views
  • 815
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gang Lu
  2. Stephanie Weng
  3. Mary Matyskiela
  4. Xinde Zheng
  5. Wei Fang
  6. Scott Wood
  7. Christine Surka
  8. Reina Mizukoshi
  9. Chin-Chun Lu
  10. Derek Mendy
  11. In Sock Jang
  12. Kai Wang
  13. Mathieu Marella
  14. Suzana Couto
  15. Brian Cathers
  16. James Carmichael
  17. Philip Chamberlain
  18. Mark Rolfe
(2018)
UBE2G1 governs the destruction of cereblon neomorphic substrates
eLife 7:e40958.
https://doi.org/10.7554/eLife.40958

Share this article

https://doi.org/10.7554/eLife.40958

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marian Brenner, Christoph Zink ... Antje Gohla
    Research Article

    Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5’-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Thomas RM Germe, Natassja G Bush ... Anthony Maxwell
    Research Article

    DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (–1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface ‘swapping’ (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed ‘swivelling’ mechanism for DNA gyrase (Gubaev et al., 2016).