FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics

  1. Melesse Nune
  2. Michael T Morgan
  3. Zaily Connell
  4. Laura McCullough
  5. Muhammad Jbara
  6. Hao Sun
  7. Ashraf Brik
  8. Tim Formosa  Is a corresponding author
  9. Cynthia Wolberger  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. University of Utah School of Medicine, United States
  3. Technion-Israel Institute of Technology, Israel

Abstract

Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Melesse Nune

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Michael T Morgan

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Zaily Connell

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. Laura McCullough

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Muhammad Jbara

    Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    No competing interests declared.
  6. Hao Sun

    Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    No competing interests declared.
  7. Ashraf Brik

    Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
    Competing interests
    No competing interests declared.
  8. Tim Formosa

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    tim@biochem.utah.edu
    Competing interests
    Tim Formosa, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8477-2483
  9. Cynthia Wolberger

    Department of Biophysics and Biophysical Chemnistry, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    cwolberg@jhmi.edu
    Competing interests
    Cynthia Wolberger, Reviewing editor, eLifeon the scientific advisory board of ThermoFisher Scientific.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8578-2969

Funding

National Institute of General Medical Sciences (GM095822)

  • Cynthia Wolberger

National Institute of General Medical Sciences (GM064649)

  • Tim Formosa

National Science Foundation (Graduate Research Fellowship)

  • Melesse Nune

Jordan and Irene Tark Academic Chair

  • Ashraf Brik

Israel Council of Higher Education (Fellowship)

  • Muhammad Jbara

National Institute of General Medical Sciences (Training Grant GM008403)

  • Melesse Nune

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geeta J Narlikar, University of California, San Francisco, United States

Version history

  1. Received: August 10, 2018
  2. Accepted: January 24, 2019
  3. Accepted Manuscript published: January 25, 2019 (version 1)
  4. Version of Record published: February 12, 2019 (version 2)

Copyright

© 2019, Nune et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,096
    views
  • 548
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melesse Nune
  2. Michael T Morgan
  3. Zaily Connell
  4. Laura McCullough
  5. Muhammad Jbara
  6. Hao Sun
  7. Ashraf Brik
  8. Tim Formosa
  9. Cynthia Wolberger
(2019)
FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics
eLife 8:e40988.
https://doi.org/10.7554/eLife.40988

Share this article

https://doi.org/10.7554/eLife.40988

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.