Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function

  1. John Grey Monroe  Is a corresponding author
  2. Tyler Powell
  3. Nicholas Price
  4. Jack L Mullen
  5. Anne Howard
  6. Kyle Evans
  7. John T Lovell
  8. John K McKay
  1. Colorado State University, United States
  2. HudsonAlpha Institute for Biotechnology, United States

Abstract

Interdisciplinary syntheses are needed to scale up discovery of the environmental drivers and molecular basis of adaptation in nature. Here we integrated novel approaches using whole genome sequences, satellite remote sensing, and transgenic experiments to study natural loss-of-function alleles associated with drought histories in wild Arabidopsis thaliana. The genes we identified exhibit population genetic signatures of parallel molecular evolution, selection for loss-of-function, and shared associations with flowering time phenotypes in directions consistent with longstanding adaptive hypotheses 7 times more often than expected by chance. We then confirmed predicted phenotypes experimentally in transgenic knockout lines. These findings reveal the importance of drought timing to explain the evolution of alternative drought tolerance strategies and further challenge popular assumptions about the adaptive value of genetic loss-of-function in nature. These results also motivate improved species-wide sequencing efforts to better identify loss-of-function variants and inspire new opportunities for engineering climate resilience in crops.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

The following previously published data sets were used
    1. Kogan F
    (1995) Vegetative Health Index
    National Oceanic and Atmospheric Administration, VHI.

Article and author information

Author details

  1. John Grey Monroe

    Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
    For correspondence
    greymonroe@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4025-5572
  2. Tyler Powell

    Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicholas Price

    Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jack L Mullen

    Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Howard

    Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyle Evans

    Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John T Lovell

    Institute for Biotechnology, HudsonAlpha Institute for Biotechnology, Huntsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. John K McKay

    Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (1022196)

  • John K McKay

National Science Foundation (1556262)

  • John K McKay

National Science Foundation (1701918)

  • John Grey Monroe

U.S. Department of Agriculture (2014- 38420-21801)

  • John Grey Monroe

Cargill (Research support)

  • John K McKay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Monroe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,624
    views
  • 969
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John Grey Monroe
  2. Tyler Powell
  3. Nicholas Price
  4. Jack L Mullen
  5. Anne Howard
  6. Kyle Evans
  7. John T Lovell
  8. John K McKay
(2018)
Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function
eLife 7:e41038.
https://doi.org/10.7554/eLife.41038

Share this article

https://doi.org/10.7554/eLife.41038

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.