Navigation: Shedding light on stellate cells
Most people can remember the floorplan of their current home and the layout of their local supermarket. They might also be able to create a virtual map of their current location, their home and the supermarket, which allows them to mentally navigate from one place to the next. Our sense of location depends on a network of regions in the brain, including the hippocampus and its neighbor, the medial entorhinal cortex (MEC).
The different types of neurons within these structures work together to form a sort of inbuilt GPS that tracks our position relative to other objects or places in the environment. In the hippocampus, place cells are activated when an animal occupies a single position in the environment (O'Keefe and Dostrovsky, 1971). In the MEC, head direction cells and border cells become active when an animal faces a particular direction or is near a border (Sargolini et al., 2006; Solstad et al., 2008). The MEC also contains grid cells that – much like the black squares on a chess board – represent multiple equally-spaced locations in an environment via their firing patterns (Hafting et al., 2005).
Previous research has shown that the inputs of the MEC into the hippocampus – in particular from the grid cells – are potentially crucial for the spatial and memory functions (Schlesiger et al., 2015). Grid cells reside predominantly in an area of the MEC known as layer II, where two morphologically distinct sub-populations of neurons, the stellate and pyramidal cells, exist.
Both stellate and pyramidal cells have different physiological properties and connect to the hippocampus through different pathways (Alonso and Klink, 1993). Stellate cells form a prominent connection directly into multiple sub-regions of the hippocampus, while the density of the connections between the pyramidal neurons and the hippocampus is significantly less. However, the exact role of stellate and pyramidal cells has so far remained unclear.
Several studies have reported that both stellate and pyramidal cells could be grid cells, while others found that the proportion of grid cells within the stellate sub-population was virtually nonexistent (Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013; Tang et al., 2014). Thus, it has remained unclear whether MEC neurons that exhibit grid firing or other spatial responses belong to the sub-class of MEC layer II cells that do indeed project into the hippocampus.
Now, in eLife, May-Britt Moser and colleagues at the Norwegian University of Science and Technology – including David Rowland as first author – report new insights into these cells (Rowland et al., 2018). Using sophisticated genetic tools paired with electrical recordings from single neurons in free-moving mice, they could assess the relationship between stellate and pyramidal cell sub-populations, and other known spatial coding neurons within the MEC layer II.
Rowland et al. used a technique called optogenetics, in which genetically modified neurons that produce light-sensitive proteins can either be activated or silenced with light. The mouse model used in the experiments expressed a light-sensitive protein called ArchT in the stellate cells of layer II, which meant that these neurons could be shut off by exposing them to light of a specific wavelength.
Rowland et al. measured the activity of layer II neurons while the mice freely explored an open space. Then, the same neurons were recorded while simultaneously exposed to light (a process referred to as ‘phototagging’). All cells that were silenced within moments of the light onset were ‘tagged’ as layer II stellate cells. This allowed a comparison of firing properties during the free-foraging session between the tagged stellate neurons and untagged populations composed primarily of pyramidal cells.
The results showed that the tagged stellate cell population had similar, if not stronger, spatial firing properties compared to the untagged cell population. Grid cells existed in similar numbers in both the tagged stellate and untagged populations. This suggests that the stellate cells projecting into the hippocampus include cells from a range of functional cell types and thus, may help the hippocampus to process information about location.
The work of Rowland et al. has resolved discrepancies between previous reports and brought to light important questions. For example, how do stellate grid cells, pyramidal grid cells and other types of spatial cells shape spatial processing and memory, and are there any differences between them? To what degree do these morphologically distinct, yet functionally overlapping, sub-populations depend on one another? These questions aside, the latest work demonstrates the power of phototagging as a means to better characterize circuit-specific projections within the brain regions that support navigation.
References
-
Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer IIJournal of Neurophysiology 70:128–143.https://doi.org/10.1152/jn.1993.70.1.128
-
Cellular mechanisms of spatial navigation in the medial entorhinal cortexNature Neuroscience 16:325–331.https://doi.org/10.1038/nn.3340
Article and author information
Author details
Publication history
Copyright
© 2018, Alexander et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,108
- views
-
- 104
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval. In a three-day study, we measured brain activity using fMRI during initial encoding, 24 hr-delayed memory cueing followed by pharmacological elevations of glucocorticoid or noradrenergic activity, and final recall. While post-retrieval glucocorticoids did not affect subsequent memory, the impairing effect of noradrenergic arousal on final recall depended on hippocampal reactivation and category-level reinstatement in the ventral temporal cortex during memory cueing. These effects did not require a reactivation of the original memory trace and did not interact with offline reinstatement during rest. Our findings demonstrate that, depending on the retrieval-related neural reactivation of memories, noradrenergic arousal after retrieval can alter the future accessibility of consolidated memories.
-
- Neuroscience
Insulin plays a key role in metabolic homeostasis. Drosophila insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings. We found that the nutritional state strongly modulates IPC activity. IPC activity decreased with increasing periods of starvation. Refeeding flies with glucose or fructose, two nutritive sugars, significantly increased IPC activity, whereas non-nutritive sugars had no effect. In contrast to feeding, glucose perfusion did not affect IPC activity. This was reminiscent of the mammalian incretin effect, where glucose ingestion drives higher insulin release than intravenous application. Contrary to IPCs, Diuretic hormone 44-expressing neurons in the pars intercerebralis (DH44PINs) responded to glucose perfusion. Functional connectivity experiments demonstrated that these DH44PINs do not affect IPC activity, while other DH44Ns inhibit them. Hence, populations of autonomously and systemically sugar-sensing neurons work in parallel to maintain metabolic homeostasis. Accordingly, activating IPCs had a small, satiety-like effect on food-searching behavior and reduced starvation-induced hyperactivity, whereas activating DH44Ns strongly increased hyperactivity. Taken together, we demonstrate that IPCs and DH44Ns are an integral part of a modulatory network that orchestrates glucose homeostasis and adaptive behavior in response to shifts in the metabolic state.