Tuning of delta-protocadherin adhesion through combinatorial diversity

  1. Adam J Bisogni
  2. Shila Ghazanfar
  3. Eric O Williams
  4. Heather M Marsh
  5. Jean Y H Yang
  6. David M Lin  Is a corresponding author
  1. Cornell University, United States
  2. University of Sydney, Australia
  3. Fitchburg State University, United States

Abstract

The delta-protocadherins (δ-Pcdhs) play key roles in neural development, and expression studies suggest they are expressed in combination within neurons. The extent of this combinatorial diversity, and how these combinations influence cell adhesion, is poorly understood. We show that individual mouse olfactory sensory neurons express 0-7 δ-Pcdhs. Despite this apparent combinatorial complexity, K562 cell aggregation assays revealed simple principles mediate tuning of δ-Pcdh adhesion. Cells can vary the number of δ-Pcdhs expressed, the level of surface expression, and which δ-Pcdhs are expressed, as different members possess distinct apparent adhesive affinities. These principles contrast with those identified previously for the clustered protocadherins (cPcdhs), where the particular combination of cPcdhs expressed does not appear to be a critical factor. Despite these differences, we show δ-Pcdhs can modify cPcdh adhesion. Our studies show how intra- and interfamily interactions can greatly amplify the impact of this small subfamily on neuronal function.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. A link to the software code is also provided.

The following previously published data sets were used

Article and author information

Author details

  1. Adam J Bisogni

    Department of Biomedical Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shila Ghazanfar

    School of Mathematics and Statistics, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric O Williams

    Department of Biology and Chemistry, Fitchburg State University, Fitchburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heather M Marsh

    Department of Biomedical Sciences, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean Y H Yang

    School of Mathematics and Statistics, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. David M Lin

    Department of Biomedical Sciences, Cornell University, Ithaca, United States
    For correspondence
    dml45@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9236-8405

Funding

National Institutes of Health (R21DC015107)

  • Adam J Bisogni

Cornell Veterinary College Research Grants Program (Seed Grant)

  • Adam J Bisogni

Australian Research Council (FT0991918)

  • Jean Y H Yang

National Health and Medical Research Council (APP1111338)

  • Jean Y H Yang

Commonwealth Scientific and Industrial Research Organisation (OCE Top Up Scholarship)

  • Shila Ghazanfar

National Institutes of Health (T32HD057854)

  • Adam J Bisogni

Australian Postgraduate Award (Postgraduate Award)

  • Shila Ghazanfar

National Institutes of Health (R01DC007489)

  • Adam J Bisogni
  • Eric O Williams
  • Heather M Marsh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#01-0075) of Cornell University.

Copyright

© 2018, Bisogni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.41050

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.