Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system

  1. Rupamanjari Majumder
  2. Iolanda Feola
  3. Alexander S Teplenin
  4. Antoine AF de Vries
  5. Alexander V Panfilov  Is a corresponding author
  6. Daniel A Pijnappels  Is a corresponding author
  1. Leiden University Medical Center, The Netherlands
  2. Gent University, Belgium
  3. Ural Federal University, Russia
5 figures, 5 videos and 2 additional files

Figures

Attract-Anchor-Drag (AAD) control of a spiral wave core along a triangular trajectory.

(A) Schematic diagram of our in vitro setup, showing how we project light patterns on an optogenetically modified monolayer. (B) The sequence of light spots that constitute the desired triangular …

https://doi.org/10.7554/eLife.41076.004
AAD control of a spiral wave core in favor of termination.

The upper panel (A1–A6) shows successful removal of a spiral wave in silico, by capturing its core from the center of the simulation domain, and dragging it to the left boundary in a stepwise …

https://doi.org/10.7554/eLife.41076.006
AAD control by continuous illumination of circular light spots of different sizes and durations.

Panel A shows representative dragging events as a spiral wave core is relocated from the center of the simulation domain to the periphery, with light spots of diameter d=0.175, 0.275 and 0.4 cm, …

https://doi.org/10.7554/eLife.41076.007
Figure 4 with 1 supplement
AAD control of a pair of spiral wave cores in favor of termination of figure-of-eight type reentry.

The upper panel (A1–A6) shows representative in silico voltage maps of the drag-to-termination process, at subsequent times. The lower panel (B1-B6) provides experimental (in vitro) validation of …

https://doi.org/10.7554/eLife.41076.009
Figure 4—figure supplement 1
AAD control of spiral wave cores to accomplish termination of a complex figure-of-eight type reentry, where the constituting spirals rotate slightly out of phase with each other.

(A1) Positions of phase singularities of the initial reentrant pattern are marked with red asterisks. (A2) Phase correction of spirals by anchoring to light spots of different sizes. (A3-5) …

https://doi.org/10.7554/eLife.41076.010
AAD control of multiple spiral wave cores in favor of termination of complex reentrant patterns.

Panels (A) and (B) show representative in silico voltage maps of the drag-to-termination process for stable reentrant activity with three and seven phase singularities, respectively. Panel (C) shows …

https://doi.org/10.7554/eLife.41076.013

Videos

Video 1
Use of AAD control method to drag a spiral wave core along a triangular trajectory in silico and in vitro.

In vitro A emphasizes the shape of the wave front. In vitro B shows the same data, but processed to show more clearly, what happens during the application of the light spots.

https://doi.org/10.7554/eLife.41076.003
Video 2
Use of AAD control method to drag a spiral wave core to termination in silico and in vitro.

In vitro A emphasizes the shape of the wave front. In vitro B shows the same data, but processed to show more clearly, what happens during the application of the light spots.

https://doi.org/10.7554/eLife.41076.005
Video 3
Use of AAD control method to terminate figure-of-eight type of reentry in silico and in vitro.

In vitro A emphasizes the shape of the wave front. In vitro B shows the same data, but processed to show more clearly, what happens during the application of the light spot.

https://doi.org/10.7554/eLife.41076.008
Video 4
Use of AAD control method to terminate complex reentry in silico, with 3 (left) and 4 (right) spiral waves.
https://doi.org/10.7554/eLife.41076.011
Video 5
Use of AAD control method to terminate complex reentry (four spiral waves) in vitro.

This video was produced in the same manner as described above for In vitro A.

https://doi.org/10.7554/eLife.41076.012

Additional files

Download links