Mechanisms of opening and closing of the bacterial replicative helicase

  1. Jillian Chase
  2. Andrew Catalano
  3. Alex J Noble
  4. Edward T Eng
  5. Paul D B Olinares
  6. Kelley Molloy
  7. Danaya Pakotiprapha
  8. Martin Samuels
  9. Brian Chait
  10. Amedee des Georges  Is a corresponding author
  11. David Jeruzalmi  Is a corresponding author
  1. City College of New York, United States
  2. New York Structural Biology Center, United States
  3. The Rockefeller University, United States
  4. Mahidol University, Thailand
  5. Harvard University, United States

Abstract

Assembly of bacterial ring-shaped hexameric replicative helicases on single-stranded (ss) DNA requires specialized loading factors. However, mechanisms implemented by these factors during opening and closing of the helicase, which enable and restrict access to an internal chamber, are not known. Here, we investigate these mechanisms in the Escherichia coli DnaB helicase•bacteriophage λ helicase loader (λP) complex. We show that five copies of λP bind at DnaB subunit interfaces and reconfigure the helicase into an open spiral conformation that is intermediate to previously observed closed ring and closed spiral forms; reconfiguration also produces openings large enough to admit ssDNA into the inner chamber. The helicase is also observed in a restrained inactive configuration that poises it to close on activating signal, and transition to the translocation state. Our findings provide insights into helicase opening, delivery to the origin and ssDNA entry, and closing in preparation for translocation.

Data availability

Cryogenic electron microscopy maps have been deposited with the EMDB under accession number EMD-7076Atomic coordinates have been deposited with the PDB under the accession code 6BBM

The following data sets were generated

Article and author information

Author details

  1. Jillian Chase

    Department of Chemistry and Biochemistry, City College of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew Catalano

    Department of Chemistry and Biochemistry, City College of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex J Noble

    National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8634-2279
  4. Edward T Eng

    National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8014-7269
  5. Paul D B Olinares

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kelley Molloy

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Danaya Pakotiprapha

    Department of Biochemistry, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5017-8283
  8. Martin Samuels

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Brian Chait

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Amedee des Georges

    Department of Chemistry and Biochemistry, City College of New York, New York, United States
    For correspondence
    amedee.desgeorges@asrc.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. David Jeruzalmi

    Department of Chemistry and Biochemistry, City College of New York, New York, United States
    For correspondence
    dj@ccny.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5886-1370

Funding

National Institutes of Health (GM084162)

  • David Jeruzalmi

National Science Foundation (MCB 1818255)

  • David Jeruzalmi

National Institutes of Health (5G12MD007603-30)

  • David Jeruzalmi

Simons Foundation (SF349247)

  • Edward T Eng

Agouron Institute (F00316)

  • Edward T Eng

National Institutes of Health (OD019994)

  • Edward T Eng

Department of Education and Training (PA200A150068)

  • Jillian Chase

National Institutes of Health (P41 GM103314)

  • Brian Chait

National Institutes of Health (P41 GM109824)

  • Brian Chait

National Institutes of Health (F32GM128303)

  • Alex J Noble

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Version history

  1. Received: August 15, 2018
  2. Accepted: December 21, 2018
  3. Accepted Manuscript published: December 24, 2018 (version 1)
  4. Version of Record published: February 26, 2019 (version 2)

Copyright

© 2018, Chase et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,123
    views
  • 611
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jillian Chase
  2. Andrew Catalano
  3. Alex J Noble
  4. Edward T Eng
  5. Paul D B Olinares
  6. Kelley Molloy
  7. Danaya Pakotiprapha
  8. Martin Samuels
  9. Brian Chait
  10. Amedee des Georges
  11. David Jeruzalmi
(2018)
Mechanisms of opening and closing of the bacterial replicative helicase
eLife 7:e41140.
https://doi.org/10.7554/eLife.41140

Share this article

https://doi.org/10.7554/eLife.41140

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.