A re-inducible gap gene cascade patterns the anterior-posterior axis of insects in a threshold-free fashion

  1. Alena Boos
  2. Jutta Distler
  3. Heike Rudolf
  4. Martin Klingler  Is a corresponding author
  5. Ezzat El-Sherif  Is a corresponding author
  1. Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract

Gap genes mediate the division of the anterior-posterior axis of insects into different fates through regulating downstream hox genes. Decades of tinkering the segmentation gene network of Drosophila melanogaster led to the conclusion that gap genes are regulated (at least initially) through a threshold-based mechanism, guided by both anteriorly- and posteriorly-localized morphogen gradients. In this paper, we show that the response of the gap gene network in the beetle Tribolium castaneum upon perturbation is consistent with a threshold-free 'Speed Regulation' mechanism, in which the speed of a genetic cascade of gap genes is regulated by a posterior morphogen gradient. We show this by re-inducing the leading gap gene (namely, hunchback) resulting in the re-induction of the gap gene cascade at arbitrary points in time. This demonstrates that the gap gene network is self-regulatory and is primarily under the control of a posterior regulator in Tribolium and possibly other short/intermediate-germ insects.

Data availability

Numerical data and sample sizes are all documented in Figure 4-source data 1, Figure 5-source data 1, and Figure 5-source data 2

Article and author information

Author details

  1. Alena Boos

    Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jutta Distler

    Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Heike Rudolf

    Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin Klingler

    Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    For correspondence
    martin.klingler@fau.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Ezzat El-Sherif

    Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    For correspondence
    ezzat.el-sherif@fau.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1738-8139

Funding

Alexander von Humboldt-Stiftung (Fellowship)

  • Ezzat El-Sherif

Deutsche Forschungsgemeinschaft (KL 656_5-1)

  • Martin Klingler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Boos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,530
    views
  • 216
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alena Boos
  2. Jutta Distler
  3. Heike Rudolf
  4. Martin Klingler
  5. Ezzat El-Sherif
(2018)
A re-inducible gap gene cascade patterns the anterior-posterior axis of insects in a threshold-free fashion
eLife 7:e41208.
https://doi.org/10.7554/eLife.41208

Share this article

https://doi.org/10.7554/eLife.41208

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.

    1. Computational and Systems Biology
    Jun Ren, Ying Zhou ... Qiyuan Li
    Research Article

    Manifold-learning is particularly useful to resolve the complex cellular state space from single-cell RNA sequences. While current manifold-learning methods provide insights into cell fate by inferring graph-based trajectory at cell level, challenges remain to retrieve interpretable biology underlying the diverse cellular states. Here, we described MGPfactXMBD, a model-based manifold-learning framework and capable to factorize complex development trajectories into independent bifurcation processes of gene sets, and thus enables trajectory inference based on relevant features. MGPfactXMBD offers a more nuanced understanding of the biological processes underlying cellular trajectories with potential determinants. When bench-tested across 239 datasets, MGPfactXMBD showed advantages in major quantity-control metrics, such as branch division accuracy and trajectory topology, outperforming most established methods. In real datasets, MGPfactXMBD recovered the critical pathways and cell types in microglia development with experimentally valid regulons and markers. Furthermore, MGPfactXMBD discovered evolutionary trajectories of tumor-associated CD8+ T cells and yielded new subtypes of CD8+ T cells with gene expression signatures significantly predictive of the responses to immune checkpoint inhibitor in independent cohorts. In summary, MGPfactXMBD offers a manifold-learning framework in scRNA-seq data which enables feature selection for specific biological processes and contributing to advance our understanding of biological determination of cell fate.