Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein

  1. Xiao-Man Liu
  2. Akinori Yamasaki
  3. Xiao-Min Du
  4. Valerie C Coffman
  5. Yoshinori Ohsumi
  6. Hitoshi Nakatogawa
  7. Jian-Qiu Wu
  8. Nobuo N Noda  Is a corresponding author
  9. Li-Lin Du  Is a corresponding author
  1. National Institute of Biological Sciences, China
  2. Microbial Chemistry Research Foundation, Japan
  3. Ohio State University, United States
  4. Tokyo Institute of Technology, Japan

Abstract

The ubiquitin-like protein Atg8, in its lipidated form, plays central roles in autophagy. Yet, remarkably, Atg8 also carries out lipidation-independent functions in non-autophagic processes. How Atg8 performs its moonlighting roles is unclear. Here we report that in the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, the lipidation-independent roles of Atg8 in maintaining normal morphology and functions of the vacuole require its interaction with a vacuole membrane protein Hfl1 (homolog of human TMEM184 proteins). Crystal structures revealed that the Atg8-Hfl1 interaction is not mediated by the typical Atg8-family-interacting motif (AIM) that forms an intermolecular β-sheet with Atg8. Instead, the Atg8-binding regions in Hfl1 proteins adopt a helical conformation, thus representing a new type of AIMs (termed helical AIMs here). These results deepen our understanding of both the functional versatility of Atg8 and the mechanistic diversity of Atg8 binding.

Data availability

The atomic coordinates and reflection data of the crystal structures of fission yeast and budding yeast Atg8-Hfl1 complexes have been deposited in the Protein Data Bank under accession codes 6AAF and 6AAG, respectively.

The following data sets were generated

Article and author information

Author details

  1. Xiao-Man Liu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  2. Akinori Yamasaki

    Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
    Competing interests
    No competing interests declared.
  3. Xiao-Min Du

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  4. Valerie C Coffman

    Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  5. Yoshinori Ohsumi

    Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    No competing interests declared.
  6. Hitoshi Nakatogawa

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    Hitoshi Nakatogawa, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5828-0741
  7. Jian-Qiu Wu

    Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  8. Nobuo N Noda

    Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
    For correspondence
    nn@bikaken.or.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6940-8069
  9. Li-Lin Du

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    dulilin@nibs.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1028-7397

Funding

Japan Society for the Promotion of Science

  • Akinori Yamasaki
  • Nobuo N Noda

Japan Science and Technology Agency

  • Nobuo N Noda

National Institute of General Medical Sciences

  • Jian-Qiu Wu

Ministry of Science and Technology of the People's Republic of China

  • Li-Lin Du

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noboru Mizushima, The University of Tokyo, Japan

Version history

  1. Received: August 19, 2018
  2. Accepted: November 18, 2018
  3. Accepted Manuscript published: November 19, 2018 (version 1)
  4. Version of Record published: December 4, 2018 (version 2)

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,896
    views
  • 800
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao-Man Liu
  2. Akinori Yamasaki
  3. Xiao-Min Du
  4. Valerie C Coffman
  5. Yoshinori Ohsumi
  6. Hitoshi Nakatogawa
  7. Jian-Qiu Wu
  8. Nobuo N Noda
  9. Li-Lin Du
(2018)
Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein
eLife 7:e41237.
https://doi.org/10.7554/eLife.41237

Share this article

https://doi.org/10.7554/eLife.41237

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.