Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein

  1. Xiao-Man Liu
  2. Akinori Yamasaki
  3. Xiao-Min Du
  4. Valerie C Coffman
  5. Yoshinori Ohsumi
  6. Hitoshi Nakatogawa
  7. Jian-Qiu Wu
  8. Nobuo N Noda  Is a corresponding author
  9. Li-Lin Du  Is a corresponding author
  1. National Institute of Biological Sciences, China
  2. Microbial Chemistry Research Foundation, Japan
  3. Ohio State University, United States
  4. Tokyo Institute of Technology, Japan

Abstract

The ubiquitin-like protein Atg8, in its lipidated form, plays central roles in autophagy. Yet, remarkably, Atg8 also carries out lipidation-independent functions in non-autophagic processes. How Atg8 performs its moonlighting roles is unclear. Here we report that in the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, the lipidation-independent roles of Atg8 in maintaining normal morphology and functions of the vacuole require its interaction with a vacuole membrane protein Hfl1 (homolog of human TMEM184 proteins). Crystal structures revealed that the Atg8-Hfl1 interaction is not mediated by the typical Atg8-family-interacting motif (AIM) that forms an intermolecular β-sheet with Atg8. Instead, the Atg8-binding regions in Hfl1 proteins adopt a helical conformation, thus representing a new type of AIMs (termed helical AIMs here). These results deepen our understanding of both the functional versatility of Atg8 and the mechanistic diversity of Atg8 binding.

Data availability

The atomic coordinates and reflection data of the crystal structures of fission yeast and budding yeast Atg8-Hfl1 complexes have been deposited in the Protein Data Bank under accession codes 6AAF and 6AAG, respectively.

The following data sets were generated

Article and author information

Author details

  1. Xiao-Man Liu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  2. Akinori Yamasaki

    Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
    Competing interests
    No competing interests declared.
  3. Xiao-Min Du

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  4. Valerie C Coffman

    Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  5. Yoshinori Ohsumi

    Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    No competing interests declared.
  6. Hitoshi Nakatogawa

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    Hitoshi Nakatogawa, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5828-0741
  7. Jian-Qiu Wu

    Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  8. Nobuo N Noda

    Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
    For correspondence
    nn@bikaken.or.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6940-8069
  9. Li-Lin Du

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    dulilin@nibs.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1028-7397

Funding

Japan Society for the Promotion of Science

  • Akinori Yamasaki
  • Nobuo N Noda

Japan Science and Technology Agency

  • Nobuo N Noda

National Institute of General Medical Sciences

  • Jian-Qiu Wu

Ministry of Science and Technology of the People's Republic of China

  • Li-Lin Du

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,289
    views
  • 842
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao-Man Liu
  2. Akinori Yamasaki
  3. Xiao-Min Du
  4. Valerie C Coffman
  5. Yoshinori Ohsumi
  6. Hitoshi Nakatogawa
  7. Jian-Qiu Wu
  8. Nobuo N Noda
  9. Li-Lin Du
(2018)
Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein
eLife 7:e41237.
https://doi.org/10.7554/eLife.41237

Share this article

https://doi.org/10.7554/eLife.41237

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.