Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein

  1. Xiao-Man Liu
  2. Akinori Yamasaki
  3. Xiao-Min Du
  4. Valerie C Coffman
  5. Yoshinori Ohsumi
  6. Hitoshi Nakatogawa
  7. Jian-Qiu Wu
  8. Nobuo N Noda  Is a corresponding author
  9. Li-Lin Du  Is a corresponding author
  1. National Institute of Biological Sciences, China
  2. Microbial Chemistry Research Foundation, Japan
  3. Ohio State University, United States
  4. Tokyo Institute of Technology, Japan

Abstract

The ubiquitin-like protein Atg8, in its lipidated form, plays central roles in autophagy. Yet, remarkably, Atg8 also carries out lipidation-independent functions in non-autophagic processes. How Atg8 performs its moonlighting roles is unclear. Here we report that in the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, the lipidation-independent roles of Atg8 in maintaining normal morphology and functions of the vacuole require its interaction with a vacuole membrane protein Hfl1 (homolog of human TMEM184 proteins). Crystal structures revealed that the Atg8-Hfl1 interaction is not mediated by the typical Atg8-family-interacting motif (AIM) that forms an intermolecular β-sheet with Atg8. Instead, the Atg8-binding regions in Hfl1 proteins adopt a helical conformation, thus representing a new type of AIMs (termed helical AIMs here). These results deepen our understanding of both the functional versatility of Atg8 and the mechanistic diversity of Atg8 binding.

Data availability

The atomic coordinates and reflection data of the crystal structures of fission yeast and budding yeast Atg8-Hfl1 complexes have been deposited in the Protein Data Bank under accession codes 6AAF and 6AAG, respectively.

The following data sets were generated

Article and author information

Author details

  1. Xiao-Man Liu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  2. Akinori Yamasaki

    Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
    Competing interests
    No competing interests declared.
  3. Xiao-Min Du

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  4. Valerie C Coffman

    Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  5. Yoshinori Ohsumi

    Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    No competing interests declared.
  6. Hitoshi Nakatogawa

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    Hitoshi Nakatogawa, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5828-0741
  7. Jian-Qiu Wu

    Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  8. Nobuo N Noda

    Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
    For correspondence
    nn@bikaken.or.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6940-8069
  9. Li-Lin Du

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    dulilin@nibs.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1028-7397

Funding

Japan Society for the Promotion of Science

  • Akinori Yamasaki
  • Nobuo N Noda

Japan Science and Technology Agency

  • Nobuo N Noda

National Institute of General Medical Sciences

  • Jian-Qiu Wu

Ministry of Science and Technology of the People's Republic of China

  • Li-Lin Du

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,261
    views
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.41237

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.