Predicted glycosyltransferases promote development and prevent spurious cell clumping in the choanoflagellate S. rosetta
Abstract
In a previous study we established forward genetics in the choanoflagellate Salpingoeca rosetta and found that a C-type lectin gene is required for rosette development (Levin et al. 2014). Here we report on critical improvements to genetic screens in S. rosetta while also investigating the genetic basis for rosette defect mutants in which single cells fail to develop into orderly rosettes but instead aggregate promiscuously into amorphous clumps of cells. Two of the mutants, Jumble and Couscous, mapped to lesions in genes encoding two different predicted glycosyltransferases and displayed aberrant glycosylation patterns in the basal extracellular matrix (ECM). In animals, glycosyltransferases sculpt the polysaccharide-rich ECM, regulate integrin and cadherin activity, and, when disrupted, contribute to tumorigenesis. The finding that predicted glycosyltransferases promote proper rosette development and prevent cell aggregation in S. rosetta suggests a pre-metazoan role for glycosyltransferases in regulating development and preventing abnormal tumor-like multicellularity.
Data availability
Data have been deposited to the NCBI Sequence Read Archive under the project number PRJNA490902.
-
Jumble mutant of Salpingoeca rosettaNCBI BioSample, SAMN10061445.
-
Couscous mutant of Salpingoeca rosettaNCBI BioSample, SAMN10061446.
-
Seafoam mutant gDNA sequencingNCBI BioSample, SAMN10501893.
-
Soapsuds mutant gDNA sequencingNCBI BioSample, SAMN10501894.
-
Jumble mutant gDNA sequencingNCBI Sequence Read Archive, SRR7866767.
-
Couscous mutant gDNA sequencingNCBI Sequence Read Archive, SRR7866768.
-
Rosetteless x Mapping Strain cross gDNA sequencingNCBI Sequence Read Archive, SRR7866769.
-
Jumble x Mapping Strain cross gDNA sequencingNCBI Sequence Read Archive, SRR7866770.
-
Couscous x Mapping Strain cross gDNA sequencingNCBI Sequence Read Archive, SRR7866771.
-
Soapsuds mutant gDNA sequencingNCBI Sequence Read Archive, SRR8263909.
-
Seafoam mutant gDNA sequencingNCBI Sequence Read Archive, SRR8263910.
Article and author information
Author details
Funding
Howard Hughes Medical Institute
- Laura A Wetzel
- Tera C Levin
- Ryan E Hulett
- Daniel Chan
- Grant A King
- Reef Aldayafleh
- David S Booth
- Monika Abedin Sigg
- Nicole King
Jane Coffin Childs Memorial Fund for Medical Research (Simons Fellow)
- David S Booth
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Alejandro Sánchez Alvarado, Stowers Institute for Medical Research, United States
Publication history
- Received: September 5, 2018
- Accepted: December 14, 2018
- Accepted Manuscript published: December 17, 2018 (version 1)
- Version of Record published: January 7, 2019 (version 2)
Copyright
© 2018, Wetzel et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,690
- Page views
-
- 231
- Downloads
-
- 15
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Genetics and Genomics
Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.
-
- Computational and Systems Biology
- Evolutionary Biology
Drug metabolism by the microbiome can influence anti-cancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.