Science Forum: The Brazilian Reproducibility Initiative
Abstract
Most efforts to estimate the reproducibility of published findings have focused on specific areas of research, even though science is usually assessed and funded on a regional or national basis. Here we describe a project to assess the reproducibility of findings in biomedical science published by researchers based in Brazil. The Brazilian Reproducibility Initiative is a systematic, multi-center effort to repeat between 60 and 100 experiments: the project will focus on a set of common laboratory methods, repeating each experiment in three different laboratories. The results, due in 2021, will allow us to estimate the level of reproducibility of biomedical science in Brazil, and to investigate what the published literature can tell us about the reproducibility of research in a given area.
Data availability
All data cited in the article is available at the project's site at the Open Science Framework (https://osf.io/6av7k/).
-
Data from The Brazilian Reproducibility Initiative: a systematic assessment of Brazilian biomedical scienceOpen Science Framework, 10.17605/OSF.IO/6AV7K.
Article and author information
Author details
Funding
Instituto Serrapilheira
- Olavo B Amaral
CNPq
- Clarissa FD Carneiro
The project's funder (Instituto Serrapilheira) made suggestions on the study design, but had no role in data collection and interpretation, or in the decision to submit the work for publication. K. N. and A.P.W.S. are supported by post-doctoral scholarships within this project. C.F.D.C. is supported by a PhD scholarship from CNPq.
Reviewing Editor
- Peter A Rodgers, eLife, United Kingdom
Publication history
- Received: September 3, 2018
- Accepted: January 25, 2019
- Accepted Manuscript published: February 5, 2019 (version 1)
- Version of Record published: February 13, 2019 (version 2)
Copyright
© 2019, Amaral et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,656
- Page views
-
- 237
- Downloads
-
- 20
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Cell Biology
Nitric oxide (NO), as a gaseous therapeutic agent, shows great potential for the treatment of many kinds of diseases. Although various NO delivery systems have emerged, the immunogenicity and long-term toxicity of artificial carriers hinder the potential clinical translation of these gas therapeutics. Mesenchymal stem cells (MSCs), with the capacities of self-renewal, differentiation, and low immunogenicity, have been used as living carriers. However, MSCs as gaseous signaling molecule (GSM) carriers have not been reported. In this study, human MSCs were genetically modified to produce mutant β-galactosidase (β-GALH363A). Furthermore, a new NO prodrug, 6-methyl-galactose-benzyl-oxy NONOate (MGP), was designed. MGP can enter cells and selectively trigger NO release from genetically engineered MSCs (eMSCs) in the presence of β-GALH363A. Moreover, our results revealed that eMSCs can release NO when MGP is systemically administered in a mouse model of acute kidney injury (AKI), which can achieve NO release in a precise spatiotemporal manner and augment the therapeutic efficiency of MSCs. This eMSC and NO prodrug system provides a unique and tunable platform for GSM delivery and holds promise for regenerative therapy by enhancing the therapeutic efficiency of stem cells.
-
- Biochemistry and Chemical Biology
- Cell Biology
The ATPase p97 (also known as VCP, Cdc48) has crucial functions in a variety of important cellular processes such as protein quality control, organellar homeostasis, and DNA damage repair, and its de-regulation is linked to neuromuscular diseases and cancer. p97 is tightly controlled by numerous regulatory cofactors, but the full range and function of the p97–cofactor network is unknown. Here, we identify the hitherto uncharacterized FAM104 proteins as a conserved family of p97 interactors. The two human family members VCP nuclear cofactor family member 1 and 2 (VCF1/2) bind p97 directly via a novel, alpha-helical motif and associate with p97-UFD1-NPL4 and p97-UBXN2B complexes in cells. VCF1/2 localize to the nucleus and promote the nuclear import of p97. Loss of VCF1/2 results in reduced nuclear p97 levels, slow growth, and hypersensitivity to chemical inhibition of p97 in the absence and presence of DNA damage, suggesting that FAM104 proteins are critical regulators of nuclear p97 functions.