Science Forum: The Brazilian Reproducibility Initiative

  1. Olavo B Amaral  Is a corresponding author
  2. Kleber Neves
  3. Ana P Wasilewska-Sampaio
  4. Clarissa FD Carneiro
  1. Federal University of Rio de Janeiro, Brazil

Abstract

Most efforts to estimate the reproducibility of published findings have focused on specific areas of research, even though science is usually assessed and funded on a regional or national basis. Here we describe a project to assess the reproducibility of findings in biomedical science published by researchers based in Brazil. The Brazilian Reproducibility Initiative is a systematic, multi-center effort to repeat between 60 and 100 experiments: the project will focus on a set of common laboratory methods, repeating each experiment in three different laboratories. The results, due in 2021, will allow us to estimate the level of reproducibility of biomedical science in Brazil, and to investigate what the published literature can tell us about the reproducibility of research in a given area.

Data availability

All data cited in the article is available at the project's site at the Open Science Framework (https://osf.io/6av7k/).

The following data sets were generated

Article and author information

Author details

  1. Olavo B Amaral

    Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
    For correspondence
    olavo@bioqmed.ufrj.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4299-8978
  2. Kleber Neves

    Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana P Wasilewska-Sampaio

    Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Clarissa FD Carneiro

    Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8127-0034

Funding

Instituto Serrapilheira

  • Olavo B Amaral

CNPq

  • Clarissa FD Carneiro

The project's funder (Instituto Serrapilheira) made suggestions on the study design, but had no role in data collection and interpretation, or in the decision to submit the work for publication. K. N. and A.P.W.S. are supported by post-doctoral scholarships within this project. C.F.D.C. is supported by a PhD scholarship from CNPq.

Reviewing Editor

  1. Peter A Rodgers, eLife, United Kingdom

Publication history

  1. Received: September 3, 2018
  2. Accepted: January 25, 2019
  3. Accepted Manuscript published: February 5, 2019 (version 1)
  4. Version of Record published: February 13, 2019 (version 2)

Copyright

© 2019, Amaral et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,589
    Page views
  • 234
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olavo B Amaral
  2. Kleber Neves
  3. Ana P Wasilewska-Sampaio
  4. Clarissa FD Carneiro
(2019)
Science Forum: The Brazilian Reproducibility Initiative
eLife 8:e41602.
https://doi.org/10.7554/eLife.41602

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    CJ Kelly, Reid K Couch ... Anthony S Grillo
    Research Article Updated

    Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many characteristic symptoms of Leigh Syndrome including oxidative stress, neuroinflammation, brain lesions, and premature death. NDUFS4 knockout mice have decreased expression of nearly every Complex I subunit. As Complex I normally contains at least 8 iron-sulfur clusters and more than 25 iron atoms, we asked whether a deficiency of Complex I may lead to iron perturbations, thereby accelerating disease progression. Consistent with this, iron supplementation accelerates symptoms of brain degeneration in these mice, while iron restriction delays the onset of these symptoms, reduces neuroinflammation, and increases survival. NDUFS4 knockout mice display signs of iron overload in the liver including increased expression of hepcidin and show changes in iron-responsive element-regulated proteins consistent with increased cellular iron that were prevented by iron restriction. These results suggest that perturbed iron homeostasis may contribute to pathology in Leigh Syndrome and possibly other mitochondrial disorders.

    1. Biochemistry and Chemical Biology
    Rui P Silva, Yimin Huang ... Jennifer A Maynard
    Research Article

    To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of β-coronaviruses: SARS-CoV-2 S2 apex residues 980–1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.